Spongy bone deformation mechanisms

Experimental and numerical studies

Authors

  • Fahmi Chaari Laboratoire d’Automatique, de Mécanique et d’Informatique industrielles et Humaines (UMR 8530 CNRS) Université de Valenciennes et du Hainaut-Cambrésis Le Mont-Houy, Jonas2 F-59313 Valenciennes cedex 9
  • Julien Halgrin Laboratoire d’Automatique, de Mécanique et d’Informatique industrielles et Humaines (UMR 8530 CNRS) Université de Valenciennes et du Hainaut-Cambrésis Le Mont-Houy, Jonas2 F-59313 Valenciennes cedex 9
  • Éric Markiewicz Laboratoire d’Automatique, de Mécanique et d’Informatique industrielles et Humaines (UMR 8530 CNRS) Université de Valenciennes et du Hainaut-Cambrésis Le Mont-Houy, Jonas2 F-59313 Valenciennes cedex 9
  • Pascal Drazetic Laboratoire d’Automatique, de Mécanique et d’Informatique industrielles et Humaines (UMR 8530 CNRS) Université de Valenciennes et du Hainaut-Cambrésis Le Mont-Houy, Jonas2 F-59313 Valenciennes cedex 9

DOI:

https://doi.org/10.13052/EJCM.18.67-79

Keywords:

spongy bone, compression tests, finite element simulation

Abstract

In order to identify the spongy bone's mechanical behaviour, we performed compression tests on cylindrical samples. Experimental results show important dispersions and an unexpected inverse strain rate dependency at low range of loading velocities. The origin of the dispersions can be attributed to the combination of the architecture effect and the mechanical properties variation of the constitutive material. In order to understand the inverse strain rate sensitivity, we used a controlled constitutive material to build new equivalent samples with the spongy bone's architecture. These samples were subjected to compression tests. Numerical simulations of compression tests on the same architecture have been carried out with FE models built from μCt data. The obtained results are compared in term of final sample shape and the evolution of the compression force.

Downloads

Download data is not yet available.

References

Baivier S., Chaari F., Drazetic P. and Markiewicz E., “A micro finite element reconstruction

of identifying spongy bone mechanical behaviour”, SB Conference, Brussels, 2005.

Bayraktar H. H. and Keaveny T. M., “Mechanisms of uniformity of yield strains for

trabecular bone”, Journal of Biomechanics, 37, 2004, p. 1671-1678.

Canaple B., Rungen P., Drazetic P., Markiewicz E. and Cesari D., “Towards a finite element

head model used a head injury predictive tool”, Int, Journal of Crashworthiness, 8, 2003,

p. 19-30.

Carter D.R. and Hayes W.C., “The compressive behaviour of bone as a two-phase porous

structure”, Journal of bone and joint surgery, vol. 59, 1977, p. 954-962.

Chaari F., Markiewicz É., Drazetic P. “Identification of the spongy bone mechanical

behaviour under compression loads: numerical simulation versus experimental results”,

International Journal of Crashworthiness vol. 12, n° 3, 2007 p. 247-253.

Delille C., Baivier S., Masson C. and Drazetic P., “Identification of skull behaviour laws

starting from bending tests”, Mécanique et Industries, vol. 4, 2003, p. 119-123.

Follet H., Caractérisation Biomécanique et Modélisation 3D par Imagerie X et IRM haute

résolution de l’os spongieux humain : Evaluation du risque fracturaire, PHD Thesis,

Institut National des Sciences Appliquées de Lyon, 2002.

Fyhrie D. P. and Schaffler M. B., “Failure mechanisms in human vertebral cancellous bone”,

Bone, vol. 15, 1994, p. 105-109.

Jacobs C.R., Davis B.R., Rieger C.J., Francis J.J., Saad M. and Fyhrie D.P., “The impact of

boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus

determination using large-scale finite-element modelling”, Journal of Biomechanics, 32,

, p. 1159-1164.

Kopperdahl D. L. and Keaveny T. M., “Yield strain behaviour of trabecular bone”, Journal of

Biomechanics, vol. 31, 1998, p. 601-608.

Ruan J, Awfik T., Khalil T.B., and King A.I., “Dynamic Response of the Human Head Impact

by Three-Dimensional Finite Element Analysis”, ASME, vol. 16, 1994.

Turner C. H. and Burr D. B., “Basic biomechanical measurements of bone: a tutorial”, Bone

vol. 14, 1993, p. 595-606.

Van Rietbergen B., Weinans H., Huiskes R. and Odgaard A., “A new method to determine

trabecular bone elastic properties and loading using micromechanical finite-element

models”, Journal of Biomechanics, vol. 28, n° 1, 1995, p. 69-81.

Yu H.Y., Cai Z.B., Zhou Z.R. and Zhu M.H., “Fretting behaviour of cortical bone against

titanium and its alloy”, Wear, vol. 259, n° 7-12, 2005, p. 910-918.

Zhou C., Khalil T.B. and King A.I., “A new model Comparing Impact Responses of the

Homogeneous and Inhomogeneous Human Brain”, SAE, n°952714, 1995, p. 121-137.

Downloads

Published

2009-08-12

How to Cite

Chaari, F. ., Halgrin, J. ., Markiewicz, Éric ., & Drazetic, P. . (2009). Spongy bone deformation mechanisms: Experimental and numerical studies. European Journal of Computational Mechanics, 18(1), 67–79. https://doi.org/10.13052/EJCM.18.67-79

Issue

Section

Original Article

Most read articles by the same author(s)