Méthode du gradient projeté avec contrôle d’erreur
DOI:
https://doi.org/10.13052/EMN.17.1039-1056Keywords:
probabilistic methods, structural reliability, numerical errorAbstract
Probabilistic approaches are today frequently used in the design of new civil engineering structures and durability analysis of existing constructions. The so-called Hasofer-Lind’s reliability index is the most popular reliability measure in design codes. This index can be determined by several minimizations under constraint algorithms, such as Rackwitz-Fiessler’s algorithm which is based on the projected gradient method. The drawback of this method lies in the estimation of the gradient vector of the limit state function which is often carried out by finite differences. If the perturbation chosen for this estimation gives a variation of the result lower than the accuracy of the limit state function, the algorithm could give erroneous results, not even to converge. In order to circumvent this drawback, we propose a method called projected gradient method with error control. The principle is to add to Rackwitz-Fiessler’s algorithm a procedure for choosing judiciously the perturbation for calculating the gradient vector accounting for the numerical accuracy of the limit state function. The efficiency of the proposed method can be judged from examples taken from the literature.
Downloads
References
Abdo T., Rackwitz R., “A new β-point algorithm for large time-invariant and time-variant
reliability problems”, Proc. of the 3rd WG 7.5, Der Kiureghian A. and Thoft-Christensen P.
eds., 1991.
Bonnans J.F., Gilbert J.-C., Lemarechal C., Sagastizabal C., Optimisation numérique : aspects
théoriques et pratiques, Springer, collection Mathématiques et Applications, 1999.
Bucher C.G., Bourgund U., “A fast and efficient response surface approach for structural
realiability problems”, Structural Safety, vol. 7, 1990, p. 57-66.
Castem, http://www-cast3m.cea.fr, Version 2005.
Comrel, http://www.strurel.de, Version 8.00, 2008.
Duprat F., Sellier A., “Probabilistic approach to corrosion risk due to carbonation via an adaptive
response surface method”, Probabilistic Engineering Mechanics, vol. 21, 2006, p. 207-216.
Hasofer A. M., Lind N. C., “An exact and invariant second moment code format”, Journal of
Engineering Mechanics, vol. 100, 1974, p. 111-121.
Haukaas T., Der Kiureghian A., “Strategies for finding the design point in non-linear finite
element reliability analysis”, Probabilistic Engineering Mechanics, vol. 21, 2006, p. 133-147.
Liu P. L., Der Kiureghian A., Optimization algorithms for structural reliability analysis, Report
UCB/SESM-86/09, University of California, Berkeley, 1986.
Liu P. L., Der Kiureghian A., “Optimization algorithms for structural reliability”, Structural
Safety, vol. 9, 1991, p. 161-177.
Madsen H. O., Krenk S., Lind N.C., Methods of structural safety, Prentice-Hall, 1986.
Madsen H. O., “Omission sensitivity factors”, Structural Safety, vol. 5, 1988, p. 35-45.
Nataf A., « Détermination des distributions dont les marges sont données », Comptes-rendus de
l’Académie des sciences, n° 225, 1962, p. 42-43.
Nelder J.A., Mead R., “A simplex method for function minimization”, Comput. Journal, vol. 7,
, p. 308-313.
Nguyen X.S., Sellier A., Duprat F., Pons G., « Une méthode de surface de réponse adaptative en
fiabilité des structures basée sur la régression pondérée », Revue européenne de mécanique
numérique, vol. 16, 2007, p. 53-77.
OpenSees, http://opensees.berkeley.edu/index.php, Version 1.7.5, 2008.
Polak E., Optimization – Algorithms and consistent approximations, Applied Mathematical
Sciences, Springer Verlag, vol. 124, 1997.
Rackwitz R., Fiessler B., “Structural reliability under combined random load sequences”,
Computers & Structures, vol. 9, 1978, p. 489-494.
Zhang Y., Der Kiureghian A., “Two improved algorithms for reliability analysis”, Proc. of the
th IFIP WG 7.5, Rackwitz R., Augusti A. and Borri A. eds., 1995.