Une méthode de surface de réponse adaptative en fiabilité des structures basée sur la régression pondérée
DOI:
https://doi.org/10.13052/16%20–%20n°%201/2007Keywords:
finite elements, probabilistic methods, response surface method, weight regressionAbstract
In structural reliability analysis where the structural response is computed from the finite element method, the response surface method is frequently used. Typically, the response surface is built from polynomial whose coefficients are estimated from an implicit limit state function numerically defined at fitting points. The location of these points must be selected in a judicious way in order to minimize computing time without deteriorating the quality of polynomial approximation. To contribute to the development of this method, we propose some improvements here. An adaptive construction of the numerical design is proposed. The response surface is fitted by the regression technique that allows the fitting points to be weighted according to their distance from the true failure surface. The response surface is successively formed in a cumulative manner. This method is aimed to minimize computing time and simultaneously to produce satisfactorily results. The effectiveness and the accuracy of the proposed method can be judged from examples taken in the previous literature.
Downloads
References
Atkinson A.C., Donev A.N., Optimal experimental designs, Oxford University Press Inc.,
Benoist D., Tourbier Y. et Germain-Tourbier S., Plans d’expériences : construction et
analyse, Lavoisier Tech & Doc, 1994.
Box G.E.P. et Draper N.R., “Empirical model building and response surface”, J. Wiley Series,
Probability and Mathematical statistics, 1987.
Bucher C.G. et Bourgund U., “A fast and efficient response surface approach for structural
reliability problems”, Structural Safety, 7, 1990, p. 57-66.
Das P. K. et Zheng Y., “Cumulative formation of response surface and its use in reliability
analysis”, Probabilistic Engineering Mechanics, 2002, 15, p. 309-315.
Devictor N., Fiabilité et mécanique : méthodes FORM/SORM et couplages avec des codes
d’éléments finis par des surfaces de réponse adaptatives, Thèse de doctorat de l’Université
Blaise Pascal - Clermont II, France, 1996.
Devictor N., Marques M. et Lemaire M., « Utilisation des surfaces de réponse dans le calcul
de la fiabilité des composants mécaniques ». Revue Française de Mécanique, n° 1997-1,
p. 43-51.
Ditlevsen O. et Madsen H.O., Structural Reliability Methods, John Wiley & Sons, 1996.
Draper N.R. et Smith H., Applied regression analysis, J. Wiley & Sons, 1981.
Droesbeke J., Fine J., Saporta G., Plans d’expériences, application à l’entreprise,
éd. Technip, 1994.
Duprat F. et Sellier A., “Probabilistic approach to corrosion risk due to carbonation via an
adaptive response surface method”, Probabilistic Engineering Mechanics, in press 2006.
Elegbede C., “Structural reliability assessment based on particles swarm optimization”,
Structural Safety, 2005, p. 171-86.
Enevoldsen I., Faber M.H., Sorensen J.D., Adaptive response surface technique in reliability
estimation. Structural Safety, Schuëller, Shinozuka & Yao (eds), 1994, p. 1257-1264.
Faravelli L., “Response surface approach for reliability analysis”, J Eng Mech, ASCE 1989,
vol. 115, n° 12, p. 2763-81.
Gayton N., Bourinet J. M., Lemaire M., “CQ2RS: a new statistical approach to the response
surface method for reliability analysis”, Structural Safety, 25, 2003, p. 99-121.
Hasofer A. M. et Lind N. C., An exact and invariant second moment code format, J Eng
Mech, vol. 100, 1974, p. 111-121.
Kaymaz I. et McMahon C. A., “A response surface method based on weighted regression for
structural reliability analysis”, Probabilistic Engineering Mechanics, 2004, 20, p. 1-7.
Kim Sang-Hyo et Na Seong-Won, “Response surface method using vector projeted sampling
points”, Structural Safety, vol. 19, n° 1, 1997, p. 3-19.
Lemaire M., “Finite element and reliability: combined methods by response surface”,
G.N. Frantziskonis, editor, PROBAMAT-21st Century: Probabilities and Materials. Test,
Models and Applications for the 21st Century, vol. NATO ASI series 3.
Liu P. L. et Der Kiureghian A., Optimisation algorithms for structural reliability analysis,
Report No. UCB/SESM-86/09, University of California, Berkeley, 1986.
Melchers R. E., Structural Reliability, Analysis and Prediction, J. Wiley and Sons,
Chichester, 1999.
Muzeau J. P., Lemaire M., El-Tawil K., « Méthodes fiabilistes des surfaces de réponse
quadratiques et évaluation des règlements ». Constructions Métalliques, n° 3, 1993,
p. 41-52.
Nataf A., « Détermination des distributions dont les marges sont données », Comptes rendus
de l’Académie des sciences, 225, 1962, p. 42-43.
Rackwitz R., Fiessler B., “Structural reliability under combined random load sequences”,
Computers & Structures, vol. 9, 1978, p. 489-494.
Rajashkhar Malur R., Ellingwood Bruce R., “A new look at the response approach for
reliability analysis”, Structural Safety, 12, 1993, p. 205-220.
Rubinstein R. Y., Simulations and Monte-Carlo Method, Wiley Series in Probability and
Mathematical, J. Wiley & Sons, 1981.
Saporta G., Probabilités, analyse des données et statistique, Editions Technip, 1990.
Sudret B., Der Kiureghian A., Stochastic Finite Elements Methods and Reliability, State of
the art report, University of California, Berkeley, USA, 2000.
Wong F. S., “Slope reliability and response surface method”, J. of Geotechnical Engineering,
ASCE, 1985, 111, p. 32-53.
Wu Y. T., Wirsching P. H., “New algorithms for reliability estimation”, Journal of
Engineering Mechanics, vol. 113, n° 9, 1987, p. 1319-1336.