Spider XFEM, an extended finite element variant for partially unknown crack-tip displacement

Authors

  • Elie Chahine Institut de Mathématiques UMR CNRS 5215, GMM INSA Toulouse Complexe scientifique de Rangueil, F-31077 Toulouse cedex 4
  • Patrick Laborde Institut de Mathématiques UMR CNRS 5215, UPS Toulouse 3 118 route de Narbonne, F-31062 Toulouse cedex 4
  • Yves Renard Institut Camille Jordan CNRS UMR 5208, INSA de Lyon, Université de Lyon 20 rue Albert Einstein, F-69621 Villeurbanne cedex

DOI:

https://doi.org/10.13052/REMN.17.625-636

Keywords:

fracture, Xfem, error estimates, numerical convergence rate

Abstract

In this paper, we introduce a new variant of the extended finite element method (Xfem) allowing an optimal convergence rate when the asymptotic displacement is partially unknown at the crack tip. This variant consists in the addition of an adapted discretization of the asymptotic displacement. We give a mathematical result of quasi-optimal a priori error estimate which allows to analyze the potentialities of the method. Some computational tests are provided and a comparison is made with the classical Xfem.

Downloads

Download data is not yet available.

References

Adams R., Sobolev Spaces, Academic Press, 1975.

Béchet E., Minnebo H., Moës N., Burgardt B., “ Improved implementation and robustness

study of the X-FEM for stress analysis around cracks”, Int. J. Numer. Meth. Engng., vol. 64,

p. 1033-1056, 2005.

Bendhia H., “ Multiscale mechanical problems : the Arlequin method”, C. R. Acad. Sci., série

I, Paris, vol. 326, p. 899-904, 1998.

Chahine E., Laborde P., Renard Y., “ Quasi-optimal convergence result in fracture mechanics

with XFEM”, C.R. Math. Acad. Sci. Paris, vol. 342, p. 527-532, 2006.

Chahine E., Laborde P., Renard Y., “ Crack tip enrichment in the XFEM method using a cut-off

function”, Int. J. Numer. Meth. Engng., to appear.

Chang J., Xu J.-Q., “ The singular stress field and stress intensity factors of a crack terminating

at a bimaterial interface”, Int. J. Mech. Sci., vol. 49, p. 888-897, 2007.

Ciarlet P., The finite element method for elliptic problems, Studies in Mathematics and its Applications

No 4, North Holland, 1978.

Ern A., Guermond J.-L., Éléments finis: théorie, applications, mise en oeuvre, Mathématiques

et Applications 36, SMAI, Springer-Verlag, 2002.

Glowinski R., He J., Rappaz J., Wagner J., “ Approximation of multi-scale elliptic problems

using patches of elements”, C. R. Math. Acad. Sci., Paris, vol. 337, p. 679-684, 2003.

Grisvard P., “ Problèmes aux limites dans les polygones - Mode d’emploi”, EDF Bull. Dirctions

Etudes Rech. Sér. C. Math. Inform. 1, vol. MR 87g:35073, p. 21-59, 1986.

Grisvard P., Singularities in boundary value problems, Masson, 1992.

Laborde P., Renard Y., Pommier J., Salaün M., “ High Order Extended Finite Element Method

For Cracked Domains”, Int. J. Numer. Meth. Engng., vol. 64, p. 354-381, 2005.

Lemaitre J., Chaboche J.-L., Mechanics of Solid Materials, Cambridge University Press, 1994.

Melenk J., Babu·ska I., “ The partition of unity finite element method: Basic theory and applications”,

Comput. Meths. Appl. Mech. Engrg., vol. 139, p. 289-314, 1996.

Moës N., Belytschko T., “ X-FEM: Nouvelles Frontières Pour les Eléments Finis”, Revue européenne

des éléments finis, vol. 11, p. 131-150, 1999a.

Moës N., Dolbow J., Belytschko T., “ A finite element method for crack growth without remeshing”,

Int. J. Numer. Meth. Engng., vol. 46, p. 131-150, 1999b.

Renard Y., Pommier J., Getfem++, An open source generic C++ library for finite element methods,

http://home.gna.org/getfem/.

Rice J., “ Elastic fracture mechanics concepts for interfacial cracks”, Journal of Applied Mechanics,

vol. 55, p. 98-103, 1988.

Strang G., Fix G., An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs,

Strouboulis T., Babuska I., Copps K., “ The design and analysis of the Generalized Finite Element

Method”, Comput. Meths. Appl. Mech. Engrg., vol. 181, p. 43-69, 2000.

Downloads

Published

2008-06-11

How to Cite

Chahine, E. ., Laborde, P. ., & Renard, Y. . (2008). Spider XFEM, an extended finite element variant for partially unknown crack-tip displacement. European Journal of Computational Mechanics, 17(5-7), 625–636. https://doi.org/10.13052/REMN.17.625-636

Issue

Section

Review Article