Une méthode d’éléments finis étendue d’ordre supérieur optimale

Authors

  • Patrick Laborde UPS - Toulouse 3, Laboratoire MIP (CNRS UMR 5640) 118 route de Narbonne, F-31062 Toulouse cedex 4
  • Julien Pommier INSA Toulouse, Laboratoire MIP (CNRS UMR 5640) Complexe scientifique de Rangueil, F-31077 Toulouse
  • Yves Renard INSA Toulouse, Laboratoire MIP (CNRS UMR 5640) Complexe scientifique de Rangueil, F-31077 Toulouse
  • Michel Salaün ENSICA, 1 pl. Emile Blouin, F-31056 Toulouse cedex 5

Keywords:

fracture, finite elements, XFEM, optimal rate of convergence, pointwise matching

Abstract

We present some modifications of the classical extended finite element method to achieve the same rate of convergence in fracture mechanics than using standard finite elements for a smooth problem. The first improvement consists in enriching an enlarged area around the crack tip. We also consider a bounding condition between the degrees of freedom of enrichment. Finally, a matching condition on the boundary of the enriched area is introduced. In such a nonconformal method, any blending element partially enriched with the asymptotic crack tip displacement solutions is considered. Numerical results on a test problem confirm optimality for finite elements of higher order.

Downloads

Download data is not yet available.

References

Béchet E., Moës N., Burgardt B., « Improved implementation and robustness study of the XFEM

method for stress analysis around cracks », Int. J. Appl. Numer. Meth. Engrg., 2005.

Grisvard P., Elliptic problems in nonsmooth domains, Pitman Publishing, London, 1985.

Laborde P., Pommier J., Renard Y., Salaün M., « High order extended finite element method for

cracked domains », Int. J. Appl. Numer. Meth. Engrg., vol. 64, p. 354-381, 2005.

Lemaitre J., Chaboche J.-L., Mechanics of Solid Materials, Cambridge University Press, 1994.

Melenk J., Babuˇska I., « The partition of unity finite element method : Basic theory and applications

», Comput. Meths. Appl. Mech. Engrg., vol. 139, p. 289-314, 1996.

Moës N., Dolbow J., Belytschko T., « A finite element method for crack growth without remeshing

», Int. J. Numer. Meth. Engr., vol. 46, p. 131-150, 1999.

Stazi F., Budyn E., Chessa J., Belytschko T., « An extended finite element method with higherorder

elements for curved cracks », Computational Mechanics, vol. 31, p. 38-48, 2003.

Downloads

Published

2006-07-01

How to Cite

Laborde, P. ., Pommier, J. ., Renard, Y., & Salaün, M. . (2006). Une méthode d’éléments finis étendue d’ordre supérieur optimale. European Journal of Computational Mechanics, 15(1-3), 233–244. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2141

Issue

Section

Original Article