A method for coupling atoms to continuum mechanics for capturing dynamic crack propagation
DOI:
https://doi.org/10.13052/REMN.17.651-662Keywords:
molecular dynamics, finite elements, energy coupling, crack propagationAbstract
Conventionally, dynamic crack propagation is modelled using fracture mechanics (either linear elastic, or with an extension to confined plasticity). Herein, we propose a different view, based on a coupling between an atomic description at the crack tip and a classical continuum description away from it. The paper presents the theoretical background and some first numerical results.
Downloads
References
Daw M. S., “ Model of metallic cohesion : the embedded-atom method”, Physical Review B,
vol. 39, n° 11, p. 7441-7452, 1989.
Dhia H. B., Rateau G., “ The Arlequin Method as a flexible engineering design tool”, International
journal for numerical methods in engineering, vol. 62, p. 1442-1462, 2005.
Lions J. L., Strauss W. A., “ Some non linear evolution equations”, Bulletin de la S.M.F., vol.
, p. 43-96, 1965.
Liu W. K., Karpov E. G., Park H. S., Nano Mechanics and Materials, Wiley, 2006.
Marx D., Hutter J., “ Ab initio molecular dynamics: Theory and Implementation”, Modern
methods and algorithms of quantum chemistry, NIC Series, vol. 1, p. 301-449, 2000.
Moës N., Dolbow J., Belytschko T., “ A finite element method for crack growth without remeshing”,
International Journal for Numerical Methods in Engineering, vol. 46, p. 131-150,
Remmers J. J. C., de Borst R., Needleman A., “ A cohesive segments method for the simulation
of crack growth”, Computational Mechanics, vol. 32, n° 1-2, p. 69-77, 2003.
Sutmann G., “ Classical Molecular Dynamics”, Quantum simulations of complex many-body
systems: from theory to algorithms - Lecture Notes, NIC Series, vol. 10, p. 211-254, 2002.
Xiao S. P., Belytschko T., “ A bridging method for coupling continua with molecular dynamics”,
Comput. Methods Appl. Mech. Engrg., vol. 193, p. 1645-1669, 2004.
Zhou S. J., Beazley D. M., Lomdahl P. S., Holian B. L., “ Large-scale Molecular Dynamics
simulations of three-dimensional ductile failure”, Physical Review Letters, vol. 78, n° 3,
p. 479-482, 1997.