Development of a finite element enriched method adapted for the case of multiple cracked structure

Authors

  • Emilien Durif Université de Lyon, Laboratoire LaMCoS (UMR/CNRS) INSA Lyon, Bât. J. d’Alembert 20 avenue Albert Einstein, F-69621 Villeurbanne cedex
  • Julien Réthoré Université de Lyon, Laboratoire LaMCoS (UMR/CNRS) INSA Lyon, Bât. J. d’Alembert 20 avenue Albert Einstein, F-69621 Villeurbanne cedex
  • Alain Combescure Université de Lyon, Laboratoire LaMCoS (UMR/CNRS) INSA Lyon, Bât. J. d’Alembert 20 avenue Albert Einstein, F-69621 Villeurbanne cedex

DOI:

https://doi.org/10.13052/EJCM.19.217-228

Keywords:

eXtended finite element method, analytical enrichment, interacting cracks

Abstract

The present method is based on the eXtended Finite Element Method and the partition of unity properties which allows the addition of enriched functions in the displacement field discretization. Those correspond to the analytical displacement field near a straight crack. The additionnal degrees of freedom correspond directly to the Stress Intensity Factors. This method is validated in mode 1 and mixed mode. A parametric study has been performed to analyse the effect of different parameters on the accuracy of the method. The case of two shading cracks has also been investigated.

Downloads

Download data is not yet available.

References

Belytschko T., Black T., “ Elastic crack growth in finite elements with minimal remeshing”,

International Journal for Numerical Methods in Engineering, vol. 45, n° 5, p. 601-620,

Budyn E., Zi G., Moes N., Belytschko T., “ A method for multiple crack growth in brittle

materials without remeshing”, Int. J. Numer. Meth. Engng, vol. 61, p. 1741-1770, 2004.

Chahine E., Laborde P., Renard Y., “ Crack tip enrichment in the XFEMmethod using a cut-off

function”, Int. J. Numer. Meth. Engng, vol. 75, n° 6, p. 629-646, 2008.

Cheung Y., Woo C.,Wang Y., “ A general method for multiple crack problems in a finite plate”,

Computational Mechanics, vol. 10, n° 5, p. 335-343, 1992.

Daux C., Moes N., Dolbow J., Sukumar N., Belytschko T., “ Arbitrary branched and intersecting

cracks with the extended ÿnite element method”, Int. J. Numer. Meth. Engng, vol. 48,

p. 1741-1760, 2000.

Helsing J., “ Fast and accurate numerical solution to an elastostatic problem involving ten thousand

randomly oriented cracks”, International Journal of Fracture, vol. 100, n° 4, p. 321-

, 2000.

Kachanov M., “ Elastic solids with many cracks- A simple method of analysis”, International

Journal of Solids and Structures,, vol. 23, n° 1, p. 23-43, 1987.

Laborde P., Pommier J., Renard Y., Salaun M., “ High order extended finite element method for

cracked domains”, Int. J. Numer. Meth. Engng, vol. 64, p. 354-381, 2005.

Lemaitre J. C. J., Mecanique des materiaux solides, Dunod, 1985.

Li Y., Tham L., Wang Y., Tsui Y., “ A modified Kachanov method for analysis of solids with

multiple cracks”, Engineering Fracture Mechanics, vol. 70, n° 9, p. 1115-1129, 2003.

Liu X., Xiao Q., Karihaloo B., “ XFEM for direct evaluation of mixed mode SIFs in homogeneous

and bi-materials”, International Journal for Numerical Methods in Engineering, vol.

, n° 8, p. 1103-1118, 2004.

McNeill S., Peters W., Sutton M., “ Estimation of stress intensity factor by digital image correlation”,

Engineering fracture mechanics, vol. 28, n° 1, p. 101-112, 1987.

Melenk J., Babuška I., “ The partition of unity finite element method: basic theory and applications”,

Computer methods in applied mechanics and engineering, vol. 139, n° 1-4,

p. 289-314, 1996.

Moes N., Dolbow J., Belytschko T., “ A finite element method for crack growth without remeshing”,

International Journal for NumericalMethods in Engineering, vol. 46, n° 1, p. 131-150,

Nicaise S., Renard Y., Chahine E., “ Optimal convergence analysis for the eXtended Finite

Element Method”, 2009.

Ventura G., “ On the elimination of quadrature subcells for discontinuous functions in the eXtended

Finite-ElementMethod”, International Journal for Numerical Methods in Engineer-

ing, vol. 66, n° 5, p. 761-795, 2006.

Ventura G., Gracie R., Belytschko T., “ Fast integration and weight function blending in the

extended finite element method”, Int. J. Numer. Meth. Engng, vol. 77, p. 1-29, 2009.

Weertman J., Disclocation based on fracture mechanics, World Scientific, 1996.

Williams M., “ On the stress distribution at the base of a stationary crack”, ASME Journal of

Applied Mechanics, vol. 24, p. 109-114, 1957.

Yau J., Wang S., Corten H., “ A mixed-mode crack analysis of isotropic solids using conservation

laws of elasticity”, Journal of Applied Mechanics, vol. 47, p. 335, 1980.

Zi G., Song J., Budyn E., Lee S., Belytschko T., “ A method for growing multiple cracks

without remeshing”, Modelling and Simulation in Materials Science and Engineering, vol.

, p. 901-915, 2004.

Downloads

Published

2010-08-06

How to Cite

Durif, E. ., Réthoré, J. ., & Combescure, A. . (2010). Development of a finite element enriched method adapted for the case of multiple cracked structure. European Journal of Computational Mechanics, 19(1-3), 217–228. https://doi.org/10.13052/EJCM.19.217-228

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 3 > >>