Unstable and limited crack propagation

Numerical modelling and parametric analysis

Authors

  • Bing Tie Laboratoire de Mécanique des Sols Structures et Matériaux (CNRS UMR 8579) Ecole Centrale Paris, F-92295 Châtenay Malabry cedex
  • Haithem Adouani Laboratoire de Mécanique des Sols Structures et Matériaux (CNRS UMR 8579) Ecole Centrale Paris, F-92295 Châtenay Malabry cedex
  • Clotilde Berdin Laboratoire de Mécanique des Sols Structures et Matériaux (CNRS UMR 8579) Ecole Centrale Paris, F-92295 Châtenay Malabry cedex
  • Silvère Cattet Laboratoire de Mécanique des Sols Structures et Matériaux (CNRS UMR 8579) Ecole Centrale Paris, F-92295 Châtenay Malabry cedex {bing.

DOI:

https://doi.org/10.13052/REMN.17.663-675

Keywords:

unstable crack propagation, pop-in, non-linear solver, cohesive zone models

Abstract

We consider in this paper the unstable and limited extension of brittle cracks when they initiate near or in local brittle zones and extend through them towards tougher material zones. Our aim is to predict their arrest and in this case, one observes the so-called “pop-in” phenomenon. We use the cohesive zone models as constitutive law of brittle cracks, which are numerically modelled using interface-type elements. Non-linear solvers including loading step adaptive strategy are developed, that is necessary to overcome convergence difficulties during the pop-in. Some numerical aspects specifically related to the pop-in modelling are discussed. Parametric studies on CT specimens are carried out to point out the influential numerical, plastic and fracture parameters. As an example, the yield strength mismatch between the local brittle zone and the tougher material plays a very important role on the pop-in phenomenon and makes its modelling dependent upon the element size at the crack-tip.

Downloads

Download data is not yet available.

References

Adouani H., Tie B., Berdin C., Aubry D., “Adaptive numerical modelling of dynamic crack

propagation”, 8th International conference on mechanical and physical: Behavior of

materials under dynamic loading, September 2006, Dijon, France.

Adouani H., Tie B., Berdin C., « Modélisation numérique de la propagation instable et limitée

de fissure due à la présence de zones locales fragiles », 8e Colloque National en Calcul

des Structures, Mai 2007, Giens, France.

ASTM 1999, Standard test method for measurement of fracture toughness, ASTM E 1820-

Barrenblatt G. I, “The mathematical theory of equilibrium of cracks in brittle fracture”, Adv.

Appl. Mech., 7, 1962, p. 55-129.

Borst R. de, “Numerical aspects of cohesive zone models”, Engineering Fracture Mechanics,

, 2003, p. 1743-1757.

Camacho G.T., Ortiz M., “Computational modeling of impact damage in brittle materials”,

International Journal of Solids and Structures, 33, 1996, p. 2899-2938.

Chaboche J.L., Feyel F., Monerie Y., “Interface debonding models: a viscous regularization

with a limited rate dependency”, International Journal of Solids and Structures, 38, 2001,

p. 3127-3160.

Chandra N., Li H., Shet C., Ghonem H., “Some issues in the application of cohesive zone

models for metal-ceramic interfaces”, International Journal of Solids and Structures, 39,

, p. 2827-2855.

Crisfield M. A., Jelenic G., Mi Y., Zhong H.-G., Fan Z., “Some aspects of the non-linear

finite element method”, Finite Elements in Analysis and Design, 27, 1997, p. 19-40.

Dugdale D. S., “Yielding of steel sheets containing slits”, J. Mech. Phys. Solids, 8, 1960,

p. 100-104.

Falk M.-L., Needleman A., Rice J.-R., “A critical evaluation of cohesive zone models of

dynamic fracture”, 5th European Mecahnics of Materials Conference, March 2001, Delft,

Netherlands, Journal de Physique IV France, vol. 11, p. Pr5-43-50.

Moës N., Belytschko T., “Extended finite element method for cohesive crack growth”,

Engng. Fract Mech, 2002, 69, p. 813-33.

Riks E., Rankin C., Brogan F.A., “On the solution of mode jumping phenomena in thinwalled

shell structures”, Comp. Meth. Appl. Mech. Eng., 136, 1996, p. 54-92.

Siegmund T., Needleman A., “A numerical study on dynamic crack growth in elasticviscoplastic

solids”, Int. J. Solids Struct., 43, 1997, p. 769-787.

Valoroso N., Champaney L., “A damage-mechanics-based approach for modelling

decohesion in adhesively bonded assembles”, Eng. Frac. Mech., 73, 2006, p. 2774-2801.

Xu X.P., Needleman A., “Numerical simulations of fast crack growth in brittle solids”,

Journal of the Mechanics and Physics of Solids, 42, 1994, p. 1397-1434.

Downloads

Published

2008-07-16

How to Cite

Tie, B. ., Adouani, H. ., Berdin, C., & Cattet, S. . (2008). Unstable and limited crack propagation: Numerical modelling and parametric analysis. European Journal of Computational Mechanics, 17(5-7), 663–675. https://doi.org/10.13052/REMN.17.663-675

Issue

Section

Original Article