Adaptive time discontinuous Galerkin method for numerical modelling of wave propagation in shell and 3D structures
Keywords:
space-time formulation, time discontinuous Galerkin (DG) method, elastic wave propagation, adaptive computing, implicit solverAbstract
This paper presents an adaptive time discontinuous Galerkin method tailored to the numerical modelling of the wave propagation phenomena through shell and 3D structures. To achieve a reliable and efficient numerical implementation, several important computational issues concerning adaptive computation are discussed, namely the variable transfer between unmatched adaptively refined finite element meshes and the improvement of the convergence of the implicit dynamic solver by using a frequency dependent relaxation coefficient. Numerical examples of large-sized engineering structures are given to illustrate the interest and efficiency of the presented method.
Downloads
References
Aubry D., Jay G., Tie B.,Muzzolini R., “ A combined mesh and model adaptive strategy for the
scaling issues in the numerical modelling of the ductile damage in thin panels”, Computer
Methods in Applied Mechanics and Engineering, vol. 192, n° 28-30, p. 3285 - 3330, 2003.
Aubry D., Tie B., Lucas D., “ Adaptive strategy for transient/coupled problems. Applications
to thermoelasticity and elastodynamics”, Comput. Methods Appl. Mech. Engrg., vol. 176,
p. 41-50, 1999.
Babuska I., Rheinboldt W. C., “ Error estimates for adaptive finite element computations”,
Journal of Numerical Analysis, vol. 15, n° 4, p. 736-754, 1978.
Bank R., Smith R., “ A posteriori error estimates based on hierarchical bases”, Industrial and
Applied Mathematics, vol. 30, p. 921-935, 1992.
Boullard A., Propagation des ondes dans les coques simples ou en nid d’abeille soumises des
charges mobiles : Application au lanceur Ariane 5 sous chocs pyrotechniques, Thèse, Ecole
Centrale de Paris, Laboratoire Mécanique des Sols, Structures et Matériaux, 2004.
Hinton E., Campbell J., “ Local and global smoothing of discontinuous finite element functions
using a least squares method”, International Journal for Numerical Methods in Engineering,
vol. 8, p. 461-480, 1974.
Hulbert M., Hughes T., “ Space-time finite element methods for elastodynamics: formulations
and error estimates”, Comput. Methods Appl. Mech. Engrg, vol. 66, p. 339-363, 1988.
Johnson C., Hansbo P., “ Adaptive finite elements methods in computational mechanics”, Computer
Methods in Applied Mechanics and Engeneering, vol. 101, p. 143-181, 1992.
Ladevèze P., “ Error estimate procedure in the finite element method and application”, J. Num.
Anal., vol. 3, n° 20, p. 485-509, 1983.
Leclère J.M., Modélisation parallèle de la propagation d’ondes dans les structures par éléments
finis adaptatifs, Thèse, Ecole Centrale de Paris, Laboratoire Mécanique des Sols, Structures
et Matériaux, 2001.
Li M., Wiberg N., “ Implementation and adaptativity of a space-time finite element method for
structural dynamics”, Computer Methods in Applied Mechanics and Engeneering, vol. 156,
p. 211-229, 1998.
Oden J., Demkowicz L., Rachkowick W., Westermann T., “ Toward a universal h − p adaptive
finite element strategy: A posteriori error estimates based on hierarchical bases”, Computer
Methods in Applied Mechanics and Engineering, vol. 77, p. 113-180, 1989.
Tie B., Aubry D., Boullard A., “ Adaptive computation for elastic wave propagation in
plate/shell structures under moving loads”, Revue européenne des Éléments finis, vol. 12,
n° 6, p. 717 - 736, 2003.
Wiberg N., Li M., “ Adaptive finite element procedures for linear and non-linear dynamics”,
Num. Meth. Eng., vol. 46, p. 1781-1802, 1999.
Zienkiewicz O., Zhu J., “ The superconvergent patch recovery and a priori error estimates”,
International Journal for Numerical Methods in Engineering, vol. 33, p. 1331-1382, 1992.