Adaptive time discontinuous Galerkin method for numerical modelling of wave propagation in shell and 3D structures

Authors

  • Bing Tie Laboratory MSSMat (CNRS UMR 8579) Ecole Centrale Paris Grande Voie des Vignes F-92295 Châtenay-Malabry cedex
  • Denis Aubry Laboratory MSSMat (CNRS UMR 8579) Ecole Centrale Paris Grande Voie des Vignes F-92295 Châtenay-Malabry cedex

Keywords:

space-time formulation, time discontinuous Galerkin (DG) method, elastic wave propagation, adaptive computing, implicit solver

Abstract

This paper presents an adaptive time discontinuous Galerkin method tailored to the numerical modelling of the wave propagation phenomena through shell and 3D structures. To achieve a reliable and efficient numerical implementation, several important computational issues concerning adaptive computation are discussed, namely the variable transfer between unmatched adaptively refined finite element meshes and the improvement of the convergence of the implicit dynamic solver by using a frequency dependent relaxation coefficient. Numerical examples of large-sized engineering structures are given to illustrate the interest and efficiency of the presented method.

Downloads

Download data is not yet available.

References

Aubry D., Jay G., Tie B.,Muzzolini R., “ A combined mesh and model adaptive strategy for the

scaling issues in the numerical modelling of the ductile damage in thin panels”, Computer

Methods in Applied Mechanics and Engineering, vol. 192, n° 28-30, p. 3285 - 3330, 2003.

Aubry D., Tie B., Lucas D., “ Adaptive strategy for transient/coupled problems. Applications

to thermoelasticity and elastodynamics”, Comput. Methods Appl. Mech. Engrg., vol. 176,

p. 41-50, 1999.

Babuska I., Rheinboldt W. C., “ Error estimates for adaptive finite element computations”,

Journal of Numerical Analysis, vol. 15, n° 4, p. 736-754, 1978.

Bank R., Smith R., “ A posteriori error estimates based on hierarchical bases”, Industrial and

Applied Mathematics, vol. 30, p. 921-935, 1992.

Boullard A., Propagation des ondes dans les coques simples ou en nid d’abeille soumises des

charges mobiles : Application au lanceur Ariane 5 sous chocs pyrotechniques, Thèse, Ecole

Centrale de Paris, Laboratoire Mécanique des Sols, Structures et Matériaux, 2004.

Hinton E., Campbell J., “ Local and global smoothing of discontinuous finite element functions

using a least squares method”, International Journal for Numerical Methods in Engineering,

vol. 8, p. 461-480, 1974.

Hulbert M., Hughes T., “ Space-time finite element methods for elastodynamics: formulations

and error estimates”, Comput. Methods Appl. Mech. Engrg, vol. 66, p. 339-363, 1988.

Johnson C., Hansbo P., “ Adaptive finite elements methods in computational mechanics”, Computer

Methods in Applied Mechanics and Engeneering, vol. 101, p. 143-181, 1992.

Ladevèze P., “ Error estimate procedure in the finite element method and application”, J. Num.

Anal., vol. 3, n° 20, p. 485-509, 1983.

Leclère J.M., Modélisation parallèle de la propagation d’ondes dans les structures par éléments

finis adaptatifs, Thèse, Ecole Centrale de Paris, Laboratoire Mécanique des Sols, Structures

et Matériaux, 2001.

Li M., Wiberg N., “ Implementation and adaptativity of a space-time finite element method for

structural dynamics”, Computer Methods in Applied Mechanics and Engeneering, vol. 156,

p. 211-229, 1998.

Oden J., Demkowicz L., Rachkowick W., Westermann T., “ Toward a universal h − p adaptive

finite element strategy: A posteriori error estimates based on hierarchical bases”, Computer

Methods in Applied Mechanics and Engineering, vol. 77, p. 113-180, 1989.

Tie B., Aubry D., Boullard A., “ Adaptive computation for elastic wave propagation in

plate/shell structures under moving loads”, Revue européenne des Éléments finis, vol. 12,

n° 6, p. 717 - 736, 2003.

Wiberg N., Li M., “ Adaptive finite element procedures for linear and non-linear dynamics”,

Num. Meth. Eng., vol. 46, p. 1781-1802, 1999.

Zienkiewicz O., Zhu J., “ The superconvergent patch recovery and a priori error estimates”,

International Journal for Numerical Methods in Engineering, vol. 33, p. 1331-1382, 1992.

Downloads

Published

2006-06-09

How to Cite

Tie, B. ., & Aubry, D. (2006). Adaptive time discontinuous Galerkin method for numerical modelling of wave propagation in shell and 3D structures. European Journal of Computational Mechanics, 15(6), 729–757. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2067

Issue

Section

Original Article