Numerical simulation of an osteoporotic femur

Before and after total hip arthroplasty

Authors

  • Mohamed Tellache LABM UMSR 2164, Université de la Méditerranée 163 av. Luminy, F-13288 Marseille cedex 09 and LMA UPR 7051, 13 chemin J. Aiguier, F-13402 Marseille cedex 20
  • Emmanuel Rixrath LABM UMSR 2164, Université de la Méditerranée 163 av. Luminy, F-13288 Marseille cedex 09
  • Patrick Chabrand LABM UMSR 2164, Université de la Méditerranée 163 av. Luminy, F-13288 Marseille cedex 09
  • Christian Hochard LMA UPR 7051, 13 chemin J. Aiguier, F-13402 Marseille cedex 20
  • Martine Pithioux LABM UMSR 2164, Université de la Méditerranée 163 av. Luminy, F-13288 Marseille cedex 09
  • Sylvie Wendling-Mansuy LABM UMSR 2164, Université de la Méditerranée 163 av. Luminy, F-13288 Marseille cedex 09

DOI:

https://doi.org/10.13052/REMN.17.785-793

Keywords:

3D-reconstruction, finite element method, contact model

Abstract

Bone remodelling adapts bone geometry and properties under supported loadings. This optimization process is deteriorated by metabolic diseases like osteoporosis which involves femoral neck fractures and implies Total Hip Arthroplasty. Two finite element models are developed to evaluate the stress distribution within osteoporotic human femur bone tissue, and its influence on the stem stability. The geometries of human femur and prosthesis are obtained by helicoid scanner acquisition. The cortical bone was separated from the trabecular bone by apparent density threshold. The results obtained for osteoporotic femur show that the degradation of trabecular architecture causes high stresses in the anteroinferior zone of the cortical bone. For the femur with hip prosthesis, high stresses weak the bone tissue in the lateral zone of the proximal dyaphisis and in the medial zone of the distal part at the end of the stem.

Downloads

Download data is not yet available.

References

Ashman R.B., Cowin S.C., Van Buskirk W.C., Rice J.C., “A continuous wave technique for

the measurement of the elastic properties of cortical bone”, Journal of Biomechanics,

vol. 17, n° 5, 1984, p. 349-361.

Bell K. L., Garrahan N., Kneissel M., Loveridge N., Grau E., Stanton M., Reeve J., “Cortical and

Cancellous Bone in the Human Femoral Neck: Evaluation of an Interactive Image Analysis

System”, Bone, vol. 19, n° 5, November 1996, p. 541-548.

Bergmann G., Graichen F., Rohlmann A., “Hip joint loading during walking and running,

measured in two patients”, Journal of Biomechanics, vol. 26, n° 8, August 1993, p. 969-990.

Bessho M., Ohnishi I., Matsuyama J., Matsumoto T., Imai K., Nakamura K., “Prediction of

strength and strain of the proximal femur by a CT-based finite element method”, Journal of

Biomechanics, vol. 40, n° 8, 2007, p. 1745-1753.

Black J., Hastings G., Handbook of Biomaterial properties, Chapman et Hall, London, 1998.

Brown T.D., Ferguson A.B.J., “Mechanical property distributions in the cancellous bone of

the human proximal femur”, Acta Orthopaedica Scandinavica, vol. 51, 1980, p. 429-437.

Crabtree N., Loveridge N., Parker M., Rushton N., Power J., Bell K.L., Beck T.J., Reeve J.,

“Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by

peripheral quantitative computed tomography”, J Bone Miner Res, vol. 16, n° 7, 2001 Jul,

p. 1318-1328.

CT2FEM: Copyright (c) 1996 Laboratorio di Tecnologia Medica of Istituti Ortopedici

Rizzoli, Bologna – Italy.

Hajjar R.R., Kamel H. K., “Osteoporosis for the Home Care Physician, Part 1: Etiology and

Current Diagnostic Strategies”, Journal of the American Medical Directors Association,

vol. 5, n° 3, May-June 2004, p. 192-196.

Huiskes R., Janssen J.D., Slooff, T.J., “A detail comparison of experimental and theoretical

stress-analyses of a human femur”, Mechanical properties of Bone, vol. 45, 1981, p. 211-234.

Katz J.L., Meunier A., “The elastic anisotropy of bone”, Journal of Biomechanics, vol. 20,

, p. 1063-1070.

Nuño N., Groppetti R., Senin N., “Static coefficient of friction between stainless steel and

PMMA used in cemented hip and knee implants”, Clinical Biomechanics, vol. 21, n° 9,

November 2006, p. 956-962.

Pithioux M., Lois de comportement et modèles de rupture des os long. Thèse de doctorat,

Université d'Aix Marseille II, 2000.

Rakotomanana R.L., Terrier A., Ramaniraka N., Rubin P., Leyvraz P.F., “Cemented and non

cemented femoral stems: coupling effects between anchorage stability and bone adaptation”,

Congress of Orthopaedic Research Society, 1997, vol. 22, p. 855.

Raminaraka N.A., Rakotomanana L.R., Leyvraz P.F., The fixation of the cemented femoral

components. Effects of stem stiffness, cement thickness and roughness of the cement bone

surface, J Bone Joint Surg [Br], 2000, 82-B, p. 297-303.

Rossi J.M., Wendling-Mansuy S., “A topology optimization based model of bone adaptation”,

Computer Methods in Biomechanics and Biomedical Engineering, 2007, 10, n° 6.

Taylor W.R., Roland E., Ploeg H., Hertig D., Klabunde R., Warner M.D., Hobatho M.C.,

Rakotomanana L., Clift S.E., “Determination of orthotropic bone elastic constants using

FEA and modal analysis”, J Biomech , vol. 35, 2002, p. 767-773.

Yoshida H., Faust A., Wilckens J., Kitagawa M., Fetto J., Chao E.Y., “Three-dimensional

dynamic hip contact area and pressure distribution during activities of daily living”,

J. Biomech, vol. 39, 2005, p. 1996 - 2004.

Downloads

Published

2008-06-19

How to Cite

Tellache, M. ., Rixrath, E., Chabrand, P. ., Hochard, C., Pithioux, M. ., & Wendling-Mansuy, S. . (2008). Numerical simulation of an osteoporotic femur: Before and after total hip arthroplasty. European Journal of Computational Mechanics, 17(5-7), 785–793. https://doi.org/10.13052/REMN.17.785-793

Issue

Section

Original Article