Numerical simulation of an osteoporotic femur
Before and after total hip arthroplasty
DOI:
https://doi.org/10.13052/REMN.17.785-793Keywords:
3D-reconstruction, finite element method, contact modelAbstract
Bone remodelling adapts bone geometry and properties under supported loadings. This optimization process is deteriorated by metabolic diseases like osteoporosis which involves femoral neck fractures and implies Total Hip Arthroplasty. Two finite element models are developed to evaluate the stress distribution within osteoporotic human femur bone tissue, and its influence on the stem stability. The geometries of human femur and prosthesis are obtained by helicoid scanner acquisition. The cortical bone was separated from the trabecular bone by apparent density threshold. The results obtained for osteoporotic femur show that the degradation of trabecular architecture causes high stresses in the anteroinferior zone of the cortical bone. For the femur with hip prosthesis, high stresses weak the bone tissue in the lateral zone of the proximal dyaphisis and in the medial zone of the distal part at the end of the stem.
Downloads
References
Ashman R.B., Cowin S.C., Van Buskirk W.C., Rice J.C., “A continuous wave technique for
the measurement of the elastic properties of cortical bone”, Journal of Biomechanics,
vol. 17, n° 5, 1984, p. 349-361.
Bell K. L., Garrahan N., Kneissel M., Loveridge N., Grau E., Stanton M., Reeve J., “Cortical and
Cancellous Bone in the Human Femoral Neck: Evaluation of an Interactive Image Analysis
System”, Bone, vol. 19, n° 5, November 1996, p. 541-548.
Bergmann G., Graichen F., Rohlmann A., “Hip joint loading during walking and running,
measured in two patients”, Journal of Biomechanics, vol. 26, n° 8, August 1993, p. 969-990.
Bessho M., Ohnishi I., Matsuyama J., Matsumoto T., Imai K., Nakamura K., “Prediction of
strength and strain of the proximal femur by a CT-based finite element method”, Journal of
Biomechanics, vol. 40, n° 8, 2007, p. 1745-1753.
Black J., Hastings G., Handbook of Biomaterial properties, Chapman et Hall, London, 1998.
Brown T.D., Ferguson A.B.J., “Mechanical property distributions in the cancellous bone of
the human proximal femur”, Acta Orthopaedica Scandinavica, vol. 51, 1980, p. 429-437.
Crabtree N., Loveridge N., Parker M., Rushton N., Power J., Bell K.L., Beck T.J., Reeve J.,
“Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by
peripheral quantitative computed tomography”, J Bone Miner Res, vol. 16, n° 7, 2001 Jul,
p. 1318-1328.
CT2FEM: Copyright (c) 1996 Laboratorio di Tecnologia Medica of Istituti Ortopedici
Rizzoli, Bologna – Italy.
Hajjar R.R., Kamel H. K., “Osteoporosis for the Home Care Physician, Part 1: Etiology and
Current Diagnostic Strategies”, Journal of the American Medical Directors Association,
vol. 5, n° 3, May-June 2004, p. 192-196.
Huiskes R., Janssen J.D., Slooff, T.J., “A detail comparison of experimental and theoretical
stress-analyses of a human femur”, Mechanical properties of Bone, vol. 45, 1981, p. 211-234.
Katz J.L., Meunier A., “The elastic anisotropy of bone”, Journal of Biomechanics, vol. 20,
, p. 1063-1070.
Nuño N., Groppetti R., Senin N., “Static coefficient of friction between stainless steel and
PMMA used in cemented hip and knee implants”, Clinical Biomechanics, vol. 21, n° 9,
November 2006, p. 956-962.
Pithioux M., Lois de comportement et modèles de rupture des os long. Thèse de doctorat,
Université d'Aix Marseille II, 2000.
Rakotomanana R.L., Terrier A., Ramaniraka N., Rubin P., Leyvraz P.F., “Cemented and non
cemented femoral stems: coupling effects between anchorage stability and bone adaptation”,
Congress of Orthopaedic Research Society, 1997, vol. 22, p. 855.
Raminaraka N.A., Rakotomanana L.R., Leyvraz P.F., The fixation of the cemented femoral
components. Effects of stem stiffness, cement thickness and roughness of the cement bone
surface, J Bone Joint Surg [Br], 2000, 82-B, p. 297-303.
Rossi J.M., Wendling-Mansuy S., “A topology optimization based model of bone adaptation”,
Computer Methods in Biomechanics and Biomedical Engineering, 2007, 10, n° 6.
Taylor W.R., Roland E., Ploeg H., Hertig D., Klabunde R., Warner M.D., Hobatho M.C.,
Rakotomanana L., Clift S.E., “Determination of orthotropic bone elastic constants using
FEA and modal analysis”, J Biomech , vol. 35, 2002, p. 767-773.
Yoshida H., Faust A., Wilckens J., Kitagawa M., Fetto J., Chao E.Y., “Three-dimensional
dynamic hip contact area and pressure distribution during activities of daily living”,
J. Biomech, vol. 39, 2005, p. 1996 - 2004.