Theory and practice of optimal shape design

Authors

  • Bijan Mohammadi Mathematics & Modelling Institute, University of Montpellier bijan.mohammadi@univ-montp2.fr
  • Olivier Pironneau Laboratory J.-L. Lions, University Paris VI pironneau@ann.jussieu.fr

DOI:

https://doi.org/10.13052/REMN.17.13-30

Keywords:

global optimization, shape design, parameterization, reduced order model, incomplete sensitivity

Abstract

This paper is a short survey of some recent developments in Optimal Shape Design (OSD) for fluids. Existence, sensitivity, compatibility of discretizations as well as efficient algorithmic implementations with low complexity are critical. In this paper we will discuss some of these issues with application to shape optimization for aerodynamic noise reduction.

Downloads

Download data is not yet available.

References

Allaire G., Jouve F., Toader A., « A level-set method for shape optimization », CRAS, vol. 334,

n° 1, p. 1-8, 2002.

Bardos C., Pironneau O., « A formalism for the differentiation of conservation laws », CRAS,

vol. 453, n° 1, p. 1-8, 2002.

Cea J., Conception optimale ou identification de forme : calcul rapide de la dérivée directionelle

de la fonction coût, Modélisation Math. Anal.-AFCET-Dunod, Paris, 1986.

Chenais D., « Shape optimization in shell theory », Eng. Optimization, vol. 1, n° 11, p. 289-303,

Danaila I., Hecht F., Pironneau O., Simulation numerique en C++, Dunod, Paris, 2004.

Delfour M., Zolezio J.-P., Surface derivatives, SIAM Series, New York, 2001.

Dervieux A., Thomasset F., « A Finite element method for the simulation of Rayleigh-Taylor

instability », Lecture Notes in Mathematics, vol. 1, n° 771, p. 145-159, 1979.

Dervieux A., Thomasset F., « Multifuid incompressible fows by a finite element method »,

Lecture Notes in Physics, vol. 1, n° 11, p. 158-163, 1981.

Garreau S., Guillaume P., Masmoudi M., « The Topological Asymptotic for PDE Systems :

The Elasticity », SIAM J. Control Optimization, vol. 39, n° 6, p. 1756-1778, 2001.

Gilbert J., Vey G. L., Masse J., « La différentiation automatique de fonctions représentées par

des programmes », INRIA, vol. 1, n° 11, p. 1-45, 1991.

Giles M., Pierce N., « Analytic adjoint solutions for the quasi-one-dimensional euler equations

», Journal of Fluid Mechanics, vol. 3, n° 426, p. 327-345, 2001.

Godlewski E., Olazabal M., Raviart P.-A., « On the linearization of hyperbolic systems of

conservation laws. Application to stability », Equations aux dérivées partielles et applications,

vol. 1, n° 10, p. 549-570, 1998.

Griewank A., « Achieving logarithmic growth of temporal and spatial complexity in reverse

automatic differentiation », Optimization Methods and Software, vol. 1, n° 12, p. 35-54,

Griewank A., Computational derivatives, Springer, New York, 2001.

Ivorra B., Hertzog D., B. Mohammadi J. S., « Global Optimization for the Design of Fast

Microfluidic Protein Folding Devices », Int. J. Num. Meth. Eng., vol. 26, n° 6, p. 2220-2226,

Marsden A., Wang M., Mohammadi B., Shape optimization for noise control, CTR Briefs,

Stanford, 2001.

Mohammadi B., « Global optimization, level set dynamics, incomplete sensitivity and regularity

control », IJCFD, vol. 21, n° 2, p. 10-45, 2007.

Mohammadi B., Pironneau O., Applied Shape Optimization for Fluids, Oxford U. Press, London,

Mohammadi B., Pironneau O., « Shape Optimization in Fluid Mechanics », Annual Revue of

Fluid Mechanics, vol. 36, n° 1, p. 255-279, 2004.

Mohammadi B., Saiac J., Pratique de la simulation numérique, Dunod, Paris, 2003.

Murat F., Simon J., Etude de problèmes d’optimum design, Lecture Notes in Computer sciences,

Paris, 1976.

Neittaanmaki P., « Computer aided optimal structural design », Surv. Math. Ind., vol. 1, n° 10,

p. 173-215, 1991.

Osher S., Sethian J., « Fronts propagating with curvature-dependent speed : Algorithms based

on Hamilton-Jacobi formulations », Journal of Computational Physics, vol. 79, n° 1, p. 12-

, 1988.

Pironneau O., Optimal shape design for elliptic systems, Springer, New York, 1984.

Sokolowski J., Zolezio J.-P., Introduction to shape optimization, Springer Series in Computational

Mathematics, Paris, 1991.

Su J., Renaud J., « Automatic Differentiation in robust optimization », AIAA Journal, vol. 35,

n° 6, p. 1072-1079, 1997.

Sverak V., « On optimal design », J. Maths. Pures et Appl., vol. 1, n° 72, p. 537-551, 1993.

Tartar L., Control problems in the coefficients of PDE, Springer - Lecture notes in Economics

and Math Systems, New York, 1974.

Tartar L., On the control of coefficients in partial differential equations, Birkhauser, Boston,

Downloads

Published

2008-09-18

How to Cite

Mohammadi, B., & Pironneau, O. (2008). Theory and practice of optimal shape design. European Journal of Computational Mechanics, 17(1-2), 13 to 30. https://doi.org/10.13052/REMN.17.13-30

Issue

Section

Original Article