A physically stabilized and locking-free formulation of the (SHB8PS) solid-shell element

Authors

  • Farid Abed-Meraim Laboratoire de Physique et Mécanique des Matériaux ENSAM CER de Metz, UMR CNRS 7554 4 rue Augustin Fresnel, F-57078 Metz
  • Alain Combescure Laboratoire de Mécanique des Contacts et des Solides INSA de Lyon, UMR CNRS 5514 18-20 rue des Sciences, F-69621 Villeurbanne

DOI:

https://doi.org/10.13052/REMN.16.1037-1072

Keywords:

SHB8PS solid-shell, hourglass, shear and membrane locking, assumed strain method, orthogonal projection

Abstract

In this work, the formulation of the SHB8PS finite element is reviewed in order to eliminate some persistent membrane and shear locking phenomena. This is a solid-shell element based on a purely three-dimensional formulation. In fact, the element has eight nodes as well as five integration points, all distributed along the “thickness” direction. Consequently, it can be used for the modeling of thin structures, while providing an accurate description of the various through-thickness phenomena. The reduced integration has been used in order to prevent some locking phenomena and to increase computational efficiency. The spurious zero-energy modes due to the reduced integration are efficiently stabilized, whereas the strain components corresponding to locking modes are eliminated with a projection technique following the Enhanced Assumed Strain (EAS) method.

Downloads

Download data is not yet available.

References

Abed-Meraim F., Combescure A., Stabilité des éléments finis sous-intégrés, Rapport interne

n° 247, LMT de Cachan, janvier 2001.

Abed-Meraim F., Combescure A., “SHB8PS a new intelligent assumed strain continuum

mechanics shell element for impact analysis on a rotating body”, First M.I.T. Conference

on Comput. Fluid and Solid Mechanics, 12-15 June 2001, U.S.A.

Abed-Meraim F., Combescure A., “SHB8PS – a new adaptative, assumed-strain continuum

mechanics shell element for impact analysis”, Computers & Structures, vol. 80, 2002,

p. 791-803.

Ahmad S., “Analysis of thick and thin shell structures by curved finite elements”,

International Journal for Numerical Methods and Engineering, vol. 2, 1970, p. 419-451.

Alves de Sousa R.J., Cardoso R.P.R., Fontes Valente R.A., Yoon J.W., Gracio J.J.,

Natal Jorge R.M., “A new one-point quadrature enhanced assumed strain (EAS) solidshell

element with multiple integration points along thickness: Part I – Geometrically

linear applications”, International Journal for Numerical Methods and Engineering,

vol. 62, 2005, p. 952-977.

Alves de Sousa R.J., Cardoso R.P.R., Fontes Valente R.A., Yoon J.W., Gracio J.J.,

Natal Jorge R.M., “A new one-point quadrature enhanced assumed strain (EAS) solidshell

element with multiple integration points along thickness: Part II – Nonlinear

applications”, International Journal for Numerical Methods and Engineering, vol. 67,

, p. 160-188.

Alves de Sousa R.J., Yoon J.W., Cardoso R.P.R., Fontes Valente R.A., Gracio J.J., “On the

use of a reduced enhanced solid-shell (RESS) element for sheet forming simulations”,

International Journal of Plasticity, vol. 23, 2007, p. 490-515.

Ayad R., Batoz J.L., Dhatt G., « Un élément quadrangulaire de plaque basé sur une

formulation mixte-hybride avec projection en cisaillement », Revue européenne des

éléments finis, vol. 4, 1995, p. 415-440.

Ayad R., Dhatt G., Batoz J.L., “A new hybrid-mixed variational approach for Reissner-

Mindlin plates: The MiSP model”, International Journal for Numerical Methods and

Engineering, vol. 42, 1998, p. 1149-1179.

Bathe K.-J., Dvorkin E.N., “Four-node plate bending element based on Mindlin/Reissner

plate theory and a mixed interpolation”, International Journal for Numerical Methods

and Engineering, vol. 21, 1985, p. 367-383.

Bathe K.-J., Dvorkin E.N., “Formulation of general shell elements – The use of mixed

interpolation of tensorial components”, International Journal for Numerical Methods and

Engineering, vol. 22, 1986, p. 697-722.

Batoz J.L., Dhatt G., Modelling of structures by finite elements, Hermès, Paris, 1992.

Belytschko T., Ong J.S.-J., Liu W.K., Kennedy J.M., “Hourglass control in linear and

nonlinear problems”, Computer Methods in Applied Mechanics and Engineering, vol. 43,

, p. 251-276.

Belytschko T., Wong B.L., Stolarski H., “Assumed strain stabilization procedure for the 9-

node Lagrange shell element”, International Journal for Numerical Methods and

Engineering, vol. 28, 1989, p. 385-414.

Belytschko T., Bindeman L.P., “Assumed strain stabilization of the eight node hexahedral

element”, Computer Methods in Applied Mechanics and Engineering, vol. 105, 1993,

p. 225-260.

Buechter N., Ramm E., Roehl D., “Three-dimensional extension of non-linear shell

formulation based on the enhanced assumed strain concept”, International Journal for

Numerical Methods and Engineering, vol. 37, 1994, p. 2551-2568.

Buragohain D.N., Ravichandran P.K., “Modified three-dimensional finite element for general

and composite shells”, Computers & Structures, vol. 51, 1994, p. 289-298.

Chapelle D., Bathe K.-J., “Fundamental considerations for the finite element analysis of shell

structures”, Computers & Structures, vol. 66, 1998, p. 19-36.

Chapelle D., Bathe K.-J., The finite element analysis of shells – Fundamentals, Springer,

Berlin, 2003.

Chen Y.-I., Wu G.-Y., “A mixed 8-node hexahedral element based on the Hu-Washizu

principle and the field extrapolation technique”, Structural Engineering and Mechanics,

vol. 17, n° 1, 2004, p. 113-140.

Cheung Y., Chen W.-J., “Refined hybrid method for plane isoparametric element using an

orthogonal approach”, Computers & Structures, vol. 42, 1992, p. 683-694.

Cho C., Park H.C., Lee S.W., “Stability analysis using a geometrically nonlinear assumed

strain solid shell element model”, Finite Elements in Analysis and Design, vol. 29, 1998,

p. 121-135.

Domissy E., Formulation et évaluation d’éléments finis volumiques modifiés pour l’analyse

linéaire et non linéaire des coques, Thèse de doctorat, UT Compiègne, 1997.

Dvorkin E.N., Bathe K.-J., “Continuum mechanics based four-node shell element for general

non-linear analysis”, Engineering Computations, vol. 1, 1984, p. 77-88.

Flanagan D.P., Belytschko T., “A uniform strain hexahedron and quadrilateral with

orthogonal hourglass control”, International Journal for Numerical Methods and

Engineering, vol. 17, 1981, p. 679-706.

Graf W., Chang T.Y., Saleeb A.F., “On the numerical performance of three-dimensional thick

shell elements using a hybrid/mixed formulation”, Finite Elements in Analysis and

Design, vol. 2, 1986, p. 357-375.

Hallquist J.O., Theoretical manual for DYNA3D, UC1D-19401 Lawrence Livemore National

Lab., University of California, 1983.

Hauptmann R., Schweizerhof K., “A systematic development of solid-shell element

formulations for linear and non-linear analyses employing only displacement degrees of

freedom”, International Journal for Numerical Methods and Engineering, vol. 42, 1998,

p. 49-69.

Hauptmann R., Doll S., Harnau M., Schweizerhof K., “Solid-shell elements with linear and

quadratic shape functions at large deformations with nearly incompressible materials”,

Computers & Structures, vol. 79, 2001, p. 1671-1685.

Jirousek J., Wroblewski A., Qin Q.H., He X.Q., “A family of quadrilateral hybrid-Trefftz pelements

for thick plate analysis”, Computer Methods in Applied Mechanics and

Engineering, vol. 127, 1995, p. 315-344.

Kim Y.H., Lee S.W., “A solid element formulation for large deflection analysis of composite

shell structures”, Computers & Structures, vol. 30, 1993, p. 269-274.

Kim K.D., Liu G.Z., Han S.C., “A resultant 8-node solid-shell element for geometrically

nonlinear analysis”, Computational Mechanics, vol. 35, 2005, p. 315-331.

Klinkel S., Gruttmann F., Wagner W., “A continuum based three-dimensional shell element

for laminated structures”, Computers & Structures, vol. 71, 1999, p. 43-62.

Klinkel S., Wagner W., “A geometrical non-linear brick element based on the EAS-method”,

International Journal for Numerical Methods and Engineering, vol. 40, 1997, p. 4529-4545.

Korelec J., Wriggers P., “Consistent gradient formulation for a stable enhanced strain method

for large deformations”, Engineering Computations, vol. 13, 1996, p. 103-123.

Legay A., Combescure A., “Elastoplastic stability analysis of shells using the physically

stabilized finite element SHB8PS”, International Journal for Numerical Methods and

Engineering, vol. 57, 2003, p. 1299-1322.

Lemosse D., Eléments finis isoparamétriques tridimensionnels pour l’étude des structures

minces, Thèse de doctorat, Ecole Doctorale SPMI/INSA-Rouen, 2000.

Liu W.K., Guo Y., Tang S., Belytschko T., “A multiple-quadrature eight-node hexahedral

finite element for large deformation elastoplastic analysis”, Computer Methods in Applied

Mechanics and Engineering, vol. 154, 1998, p. 69-132.

MacNeal R.H., Harder R.L., “A proposed standard set of problems to test finite element

accuracy”, Finite Elements in Analysis and Design, vol. 1, 1985, p. 3-20.

Onate E., Castro J., Derivation of plate based on assumed shear strain fields, New Advances

in Computational Structural Mechanics, Ladevèze and Zienkiewicz (eds.), Elsevier,

Amsterdam, 1992, p. 237-288.

Pian T.H.H., Tong P., “Relations between incompatible model and hybrid stress model”,

International Journal for Numerical Methods and Engineering, vol. 22, 1986, p. 173-181.

Puso M.A., “A highly efficient enhanced assumed strain physically stabilized hexahedral

element”, International Journal for Numerical Methods and Engineering, vol. 49, 2000,

p. 1029-1064.

Reese S., Wriggers P., Reddy B.D., “A new locking-free brick element technique for large

deformation problems in elasticity”, Computers & Structures, vol. 75, 2000, p. 291-304.

Reese S., “A large deformation solid-shell concept based on reduced integration with

hourglass stabilization”, International Journal for Numerical Methods and Engineering,

vol. 69, 2007, p. 1671-1716.

Simo J.C., Hughes T.J.R., “On the variational foundations of assumed strain methods”,

Journal of Applied Mechanics, ASME, vol. 53, 1986, p. 51-54.

Simo J.C., Fox D.D., Rifai S., “On a stress resultant geometrically exact shell model. Part II:

The linear theory; Computational Aspects”, Computer Methods in Applied Mechanics

and Engineering, vol. 73, 1989, p. 53-92.

Sze K.Y., Ghali A., “Hybrid hexahedral element for solids, plates, shells and beams by

selective scaling”, International Journal for Numerical Methods and Engineering,

vol. 36, 1993, p. 1519-1540.

Sze K.Y., Yao L.Q., “A hybrid stress ANS solid-shell element and its generalization for smart

structure modelling. Part I-solid-shell element formulation”, International Journal for

Numerical Methods and Engineering, vol. 48, 2000, p. 545-564.

Timoshenko S., Woinowsky-Krieger S., Theory of plates and shells, McGraw-Hill, London,

Vu-Quoc L., Tan X.G., “Optimal solid shells for non-linear analyses of multilayer

composites. I. Statics”, Computer Methods in Applied Mechanics and Engineering,

vol. 192, 2003, p. 975-1016.

Wall W.A., Bischoff M., Ramm E., “A deformation dependent stabilization technique,

exemplified by EAS elements at large strains”, Computer Methods in Applied Mechanics

and Engineering, vol. 188, 2000, p. 859-871.

Wriggers P., Reese S., “A note on enhanced strain methods for large deformations”,

Computer Methods in Applied Mechanics and Engineering, vol. 135, 1996, p. 201-209.

Xu X., Cai R., “A new plate shell element of 16 nodes and 40 degrees of freedom by relative

displacement method”, Communications in Numerical Methods in Engineering, vol. 9,

, p. 15-20.

Zhu Y.Y., Cescotto S., “Unified and mixed formulation of the 8-node hexahedral elements by

assumed strain method”, Computer Methods in Applied Mechanics and Engineering,

vol. 129, 1996, p. 177-209.

Downloads

Published

2007-09-13

How to Cite

Abed-Meraim, F. ., & Combescure, A. . (2007). A physically stabilized and locking-free formulation of the (SHB8PS) solid-shell element. European Journal of Computational Mechanics, 16(8), 1037–1072. https://doi.org/10.13052/REMN.16.1037-1072

Issue

Section

Original Article

Most read articles by the same author(s)

<< < 1 2