A multi-grid extended finite element method for elastic crack growth simulation
DOI:
https://doi.org/10.13052/REMN%20–%2016/2007.%20X-FEMKeywords:
extended finite element method, multi-grid solver, crack growth simulationsAbstract
The eXtended Finite Element Method (X-FEM) has been applied to a wide range of applications, in particular for crack growth simulations in structural mechanics. However, for real applications (engineering simulations,...), even if one does not need to mesh the crack, it is necessary to take into account the different spatial scales linked to the size of the domain, the geometry of the boundary, the size of the boundary with prescribed displacement or loading, the discretized "representation" of the crack,... In this respect, one proposes in this paper to couple the eXtended Finite Element Method with a multi-grid strategy. Details are given for numerical implementation with a hierarchical finite element strategy. Finally, some examples are given (mixed mode crack growth simulations) to validate the method.
Downloads
References
Béchet E., Minnebo H., Moës N., Burgardt B., « Improved implementation and robustness
study of the X-FEMfor stress analysis around cracks », International Journal for Numerical
Methods in Engineering, vol. 64, n
Æ
, p. 1033-1056, june, 2005.
Brandt A., « Multi-level adaptative technique (mlat) for fast numerical solution to boundary
value problems », Lecture Notes in Physics, 1977.
Dureisseix D., Une approche multi-échelle pour des calculs de structures sur ordinateurs à architecture
parallèles, PhD thesis, LMT Cachan, n.d.
Elguedj T., Gravouil A., Combescure A., « A mixed Augmented Lagrangian eXtended Finite
ElementMethod for modelling elastic-plastic fatigue crack growth with frictional contact »,
International Journal for Numerical Methods in Engineering, submitted, 2005.
Feyel F., « A multilevel finite element method (FE2) to describe the response of highly nonlinear
structures using generalized continua », Computer Methods in Applied Mechanics
and Engineering, vol. 192, n
Æ
-30, p. 3233-3244, july, 2003.
Fish J., Yuan Z., « Multiscale enrichment based on partition of unity », International Journal
for Numerical Methods in Engineering, vol. 70, p. 1341 - 1359, 2004.
Gosz M., Dolbow J., Moran B., « Domain integral formulation for stress intensity factor computation
along curved three-dimensional interface cracks », International Journal of Solids
and Structures, 1998.
Gravouil A., Combescure A., « Multi-time-step and two-scale domain decomposition method
for non-linear structural dynamics », International Journal for Numerical Methods in Engineering,
Guidault P., Allix O., Champaney L., Navarro J., « A multiscale computational strategy for
crack propagation with local enrichment », USNCCM 8 - 8th US National Congress on
Computational Mechanics, 2005.
Lubrecht A. A., Venner C. H., Multilevel methods in lubrication, Elsevier, 2000.
Melenck J. M., Babuška I., « The partition of unity finite element method: Basic theory and
applications », Computer Methods in Applied Mechanics and Engineering, vol. 139, p. 289-
, 1996.
Moës N., Dolbow J., Belytchko T., « A finite element method for crack growth without remeshing
», International Journal for Numerical Methods in Engineering, vol. 46, p. 131 - 150,
Parsons I. D., Hall J. F., « The multigrid method in solid mechanics : Part I – algorithm description
and behaviour », International Journal for Numerical Methods in Engineering,
a.
Parsons I. D., Hall J. F., « The multigrid method in solid mechanics : Part II – practical applications
», International Journal for Numerical Methods in Engineering, 1990b.
Ribeaucourt R., Baïetto-Dubourg M., Gravouil A., « A mixed fatigue crack growth model applied
to rolling contact fatigue », 3rd World Tribology Congress, Washington, D.C., USA,
september 12-16, 2005.
Stazi F., Finite element method for cracked and microcracked bodies, PhD thesis, Università di
Roma "La Sapienza", april, 2003.