A multi-grid extended finite element method for elastic crack growth simulation

Authors

  • Johann Rannou LaMCoS, INSA-Lyon, CNRS UMR5259 18 - 20, rue des Sciences F-69621 Villeurbanne
  • Anthony Gravouil LaMCoS, INSA-Lyon, CNRS UMR5259 18 - 20, rue des Sciences F-69621 Villeurbanne
  • Alain Combescure LaMCoS, INSA-Lyon, CNRS UMR5259 18 - 20, rue des Sciences F-69621 Villeurbanne

DOI:

https://doi.org/10.13052/REMN%20–%2016/2007.%20X-FEM

Keywords:

extended finite element method, multi-grid solver, crack growth simulations

Abstract

The eXtended Finite Element Method (X-FEM) has been applied to a wide range of applications, in particular for crack growth simulations in structural mechanics. However, for real applications (engineering simulations,...), even if one does not need to mesh the crack, it is necessary to take into account the different spatial scales linked to the size of the domain, the geometry of the boundary, the size of the boundary with prescribed displacement or loading, the discretized "representation" of the crack,... In this respect, one proposes in this paper to couple the eXtended Finite Element Method with a multi-grid strategy. Details are given for numerical implementation with a hierarchical finite element strategy. Finally, some examples are given (mixed mode crack growth simulations) to validate the method.

Downloads

Download data is not yet available.

References

Béchet E., Minnebo H., Moës N., Burgardt B., « Improved implementation and robustness

study of the X-FEMfor stress analysis around cracks », International Journal for Numerical

Methods in Engineering, vol. 64, n

Æ

, p. 1033-1056, june, 2005.

Brandt A., « Multi-level adaptative technique (mlat) for fast numerical solution to boundary

value problems », Lecture Notes in Physics, 1977.

Dureisseix D., Une approche multi-échelle pour des calculs de structures sur ordinateurs à architecture

parallèles, PhD thesis, LMT Cachan, n.d.

Elguedj T., Gravouil A., Combescure A., « A mixed Augmented Lagrangian eXtended Finite

ElementMethod for modelling elastic-plastic fatigue crack growth with frictional contact »,

International Journal for Numerical Methods in Engineering, submitted, 2005.

Feyel F., « A multilevel finite element method (FE2) to describe the response of highly nonlinear

structures using generalized continua », Computer Methods in Applied Mechanics

and Engineering, vol. 192, n

Æ

-30, p. 3233-3244, july, 2003.

Fish J., Yuan Z., « Multiscale enrichment based on partition of unity », International Journal

for Numerical Methods in Engineering, vol. 70, p. 1341 - 1359, 2004.

Gosz M., Dolbow J., Moran B., « Domain integral formulation for stress intensity factor computation

along curved three-dimensional interface cracks », International Journal of Solids

and Structures, 1998.

Gravouil A., Combescure A., « Multi-time-step and two-scale domain decomposition method

for non-linear structural dynamics », International Journal for Numerical Methods in Engineering,

Guidault P., Allix O., Champaney L., Navarro J., « A multiscale computational strategy for

crack propagation with local enrichment », USNCCM 8 - 8th US National Congress on

Computational Mechanics, 2005.

Lubrecht A. A., Venner C. H., Multilevel methods in lubrication, Elsevier, 2000.

Melenck J. M., Babuška I., « The partition of unity finite element method: Basic theory and

applications », Computer Methods in Applied Mechanics and Engineering, vol. 139, p. 289-

, 1996.

Moës N., Dolbow J., Belytchko T., « A finite element method for crack growth without remeshing

», International Journal for Numerical Methods in Engineering, vol. 46, p. 131 - 150,

Parsons I. D., Hall J. F., « The multigrid method in solid mechanics : Part I – algorithm description

and behaviour », International Journal for Numerical Methods in Engineering,

a.

Parsons I. D., Hall J. F., « The multigrid method in solid mechanics : Part II – practical applications

», International Journal for Numerical Methods in Engineering, 1990b.

Ribeaucourt R., Baïetto-Dubourg M., Gravouil A., « A mixed fatigue crack growth model applied

to rolling contact fatigue », 3rd World Tribology Congress, Washington, D.C., USA,

september 12-16, 2005.

Stazi F., Finite element method for cracked and microcracked bodies, PhD thesis, Università di

Roma "La Sapienza", april, 2003.

Downloads

Published

2007-08-25

How to Cite

Rannou, J. ., Gravouil, A. ., & Combescure, A. . (2007). A multi-grid extended finite element method for elastic crack growth simulation. European Journal of Computational Mechanics, 16(2), 161–182. https://doi.org/10.13052/REMN – 16/2007. X-FEM

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 > >>