Simulation numérique de la propagation de fissure dans les superalliages monocristallins
Simulation numérique de la propagation de fissure dans les monocristaux
DOI:
https://doi.org/10.13052/REMN.16.845-863Keywords:
finite element method, cohesive zone elements, crack growth, fatigueAbstract
In this study, a numerical method is developped to simulate fatigue crack growth. This method is based on a numerical coupled analysis using a cohesive zone modelling under cyclic loading in order to develop a coupled predictive approach of the crack growth. First, we present this damage law, then its validation by a convergence study of the solution with mesh size. We apply this model to the crack growth calculations in the case of a smooth specimen with a precracking made with a single crystal superalloy. Finally, we define the method to calibrate the cohesive zone model parameters on the base of experimental tests performed in pur fatigue regime.
Downloads
References
Barenblatt G., « The mathematical theory of equilibrium cracks in brittle fracture », Adv. Appl.
Mech., vol. 7, p. 55-129, 1962.
Chaboche J., Gallerneau F., « An overview of the damage approach of durability modelling at
elevated temperature », Fatigue and Fracture of Engng. Materials and Structures, vol. 24,
p. 405-418, 2001.
Chandra N., Shet C., « Analysis of energy balance when using cohesive zone models to simulate
fracture processes », Journal of Eng. Mat. Techn., vol. 124, p. 440-450, 2002.
De-Andres A., Perez J., Ortiz M., « Elastoplastic finite element analysis of three-dimensional
fatigue crack growth in aluminium shaft subjected to axial loading », Int. J. Of Solids And
Struct, vol. 36, p. 2231-2258, 1999.
Dugdale D., « Yielding of steel sheets containing slits », J. Mech. Phys. Solids, vol. 8, p. 100-
, 1960.
Meric L., Poubanne P., Cailletaud G., « Single crystal modelling for structural calculations :
Part 1-Model presentation », J. Eng. Mat. Techn., vol. 113, p. 162-170, 1991.
Needleman A., « A continuum model for void nucleation by inclusion debonding », Journal of
Applied Mechanics, vol. 54, p. 525-531, 1987.
Nguyen Q., Repetto E., M. M. O., Radovitzky, « A cohesive model of fatigue crack growth »,
Int. J. Of Fract, vol. 110, p. 351-369, 2001.
Paris P., Gomez M., Anderson W., « A rational analytic theory of fatigue », The trend in engineering,
vol. 13, p. 9-14, 1961.
Pommier S., Amorçage et propagation de fissures courtes en fond d’entaille. Etude du superalliage
N18 en fatigue-fluage, Thèse de doctorat, Ecole Centrale de Paris, 1995.
Prigent P.,Modèle de propagation de fissure à haute température avec intéraction fatigue-fluageoxydation,
Thèse de doctorat, Ecole Nationale des Ponts et Chaussées, 1993.
Roe K., Siegmund T., « An irreversible cohesive zone model for interface fatigue crack growth
simulation », Eng. Fract. Mech., vol. 70, p. 209-232, 2003.
Tate N., A finite element implementation of cohesive zone theory, PhD thesis, Imperial College
London, 2002.
Yang B., Mall S., Ravi-Chandar K., « A cohesive zone model for fatigue crack growth in
quasibrittle materials », Int. J. Of Solids And Struct, vol. 38, p. 3927-3944, 2001.