Simulation numérique de la propagation de fissure dans les superalliages monocristallins

Simulation numérique de la propagation de fissure dans les monocristaux

Authors

  • Jean-Luc Bouvard DMSE/LCME ONERA 29 av. de la div. Leclerc F-92322 Châtillon cedex
  • Jean-Louis Chaboche DMSE/LCME ONERA 29 av. de la div. Leclerc F-92322 Châtillon cedex
  • Frédéric Feyel DMSE/LCME ONERA 29 av. de la div. Leclerc F-92322 Châtillon cedex
  • Franck Gallerneau DMSE/LCME ONERA 29 av. de la div. Leclerc F-92322 Châtillon cedex

DOI:

https://doi.org/10.13052/REMN.16.845-863

Keywords:

finite element method, cohesive zone elements, crack growth, fatigue

Abstract

In this study, a numerical method is developped to simulate fatigue crack growth. This method is based on a numerical coupled analysis using a cohesive zone modelling under cyclic loading in order to develop a coupled predictive approach of the crack growth. First, we present this damage law, then its validation by a convergence study of the solution with mesh size. We apply this model to the crack growth calculations in the case of a smooth specimen with a precracking made with a single crystal superalloy. Finally, we define the method to calibrate the cohesive zone model parameters on the base of experimental tests performed in pur fatigue regime.

Downloads

Download data is not yet available.

References

Barenblatt G., « The mathematical theory of equilibrium cracks in brittle fracture », Adv. Appl.

Mech., vol. 7, p. 55-129, 1962.

Chaboche J., Gallerneau F., « An overview of the damage approach of durability modelling at

elevated temperature », Fatigue and Fracture of Engng. Materials and Structures, vol. 24,

p. 405-418, 2001.

Chandra N., Shet C., « Analysis of energy balance when using cohesive zone models to simulate

fracture processes », Journal of Eng. Mat. Techn., vol. 124, p. 440-450, 2002.

De-Andres A., Perez J., Ortiz M., « Elastoplastic finite element analysis of three-dimensional

fatigue crack growth in aluminium shaft subjected to axial loading », Int. J. Of Solids And

Struct, vol. 36, p. 2231-2258, 1999.

Dugdale D., « Yielding of steel sheets containing slits », J. Mech. Phys. Solids, vol. 8, p. 100-

, 1960.

Meric L., Poubanne P., Cailletaud G., « Single crystal modelling for structural calculations :

Part 1-Model presentation », J. Eng. Mat. Techn., vol. 113, p. 162-170, 1991.

Needleman A., « A continuum model for void nucleation by inclusion debonding », Journal of

Applied Mechanics, vol. 54, p. 525-531, 1987.

Nguyen Q., Repetto E., M. M. O., Radovitzky, « A cohesive model of fatigue crack growth »,

Int. J. Of Fract, vol. 110, p. 351-369, 2001.

Paris P., Gomez M., Anderson W., « A rational analytic theory of fatigue », The trend in engineering,

vol. 13, p. 9-14, 1961.

Pommier S., Amorçage et propagation de fissures courtes en fond d’entaille. Etude du superalliage

N18 en fatigue-fluage, Thèse de doctorat, Ecole Centrale de Paris, 1995.

Prigent P.,Modèle de propagation de fissure à haute température avec intéraction fatigue-fluageoxydation,

Thèse de doctorat, Ecole Nationale des Ponts et Chaussées, 1993.

Roe K., Siegmund T., « An irreversible cohesive zone model for interface fatigue crack growth

simulation », Eng. Fract. Mech., vol. 70, p. 209-232, 2003.

Tate N., A finite element implementation of cohesive zone theory, PhD thesis, Imperial College

London, 2002.

Yang B., Mall S., Ravi-Chandar K., « A cohesive zone model for fatigue crack growth in

quasibrittle materials », Int. J. Of Solids And Struct, vol. 38, p. 3927-3944, 2001.

Downloads

Published

2007-08-23

How to Cite

Bouvard, J.-L. ., Chaboche, J.-L. ., Feyel, F., & Gallerneau, F. . (2007). Simulation numérique de la propagation de fissure dans les superalliages monocristallins: Simulation numérique de la propagation de fissure dans les monocristaux. European Journal of Computational Mechanics, 16(6-7), 845–863. https://doi.org/10.13052/REMN.16.845-863

Issue

Section

Original Article