Multi-scale non-linear FE2 analysis of composite structures: damage and fiber size effects

Authors

  • Frédéric Feyel ONERA, DMSE-LCME 29, Avenue de la Division Leclerc- BP 72 F-92322 Châtillon Cedex
  • Jean-Louis Chaboche ONERA, DMSE-LCME 29, Avenue de la Division Leclerc- BP 72 F-92322 Châtillon Cedex

Keywords:

multiscale analysis, viscoplasticity, damage mechanics, metal matrix composites

Abstract

An imbricated fini te element technique is further developed in the context of multiscale ine/astic analysis of composite structures. The constitutive equations in the classical ove rail inelastic analysis are replaced by a lower leve/ fini te element analysis within the periodic homogenisation framework. Ali the physics of the problem, included in the local elastoviscoplastic and damage equations, is written for constituents at the microscale. Contrarily ta more classical approaches, the two sca/es are coupled, the local behaviour being integrated in-situ and in real time. This method is illustrated, for viscoplasticity in the matrix and damage at the fibre/mat rix interface, by the treatment of a particular bling dise made of titanium alloy and containing a reinforced composite part made in SiC/Ti. A specifie relocalisation technique for FE2 is then proposed for situations where the microstructure is composed of "coarse grains" (he re fibres of a significant size). The method uses an interpolated mapping technique, that allows ta obtain very correct and continuous strain and stress fields at the lower leve/ of the whole composite part.

Downloads

Download data is not yet available.

References

[BAR 95) BAROU MES L., VINCON 1., <>,

Rapport technique contrat Snecma!LMT 762 593F, LMT-Cachan, 1995.

[BAR OOa) BARBE F., DECKER L., JEULIN 0., CAILLETAUD G., << lntergranular and transgranular

behavior of polycrystalline aggregates : Part 1, generation of the f.e. mode! >>, /nt.

Journal of Plasticity, 2000 , accepted.

[BAR 00b) BARBE F., FOREST S., CAILLETAUD G., << lntergranular and transgranular behavior

of polycrystalline aggregates : Part 2, results >>, /nt. Journal of Plasticity, 2000 ,

accepted.

[BES 97] BESSON J., FOERCH R., <>,

Camp. Meth. on Appt. Mechanics and Engineering, vol. 142, p. 165-187, 1997.

[BJ0 86] BJ0RSTAD P., WIDLUND 0., <

on regions partitioned into substructures >>, J. Numer. Anal., vol. 23, p. 1097-1120, 1986.

[CAl 94] CAILLETAUD G., PILVIN P.,<< Utilisation de modèles polycristallins pour le calcul

par éléments finis>>, Revue Européenne des Éléments Finis, vol. 3, n. 4, p. 515-541, 1994.

[DUN 94] DUNNE F. P. E., HAYHURST D. R., «Efficient cycle jumping techniques for the

modelling of materials and structures under cyclic mechanical and thermalloading >>, Eur.

J. Mech., NSolids, vol. 13, n. 5, p. 639-660, 1994.

[DUR 97] DUREISSEIX D., « Une approche multi-échelles pour des calculs de structures sur

ordinateurs à architecture parallèle >>, PhD thesis, Université Pierre et Marie Curie, Paris

, 1997.

[FAR 91] FARHAT C., Roux F.-X., «A method of finite element tearing and interconnecting

and its parallel solution algorithm >>,/nt. J.for Numerical Methods in Engineering, vol. 32,

p. 1205-1227, 1991.

[FEY 97a] FEYEL F., CAILLETAUD G., KRUCH S., ROUX F. X., « Application du calcul

parallèle aux modèles à grand nombre de variables internes >>, In Colloque National en

calcul de structures, may 20-23 1997, Giens, France.

[FEY 97b) FEYEL F., CALLOCH S., MARQUIS D., CAILLETAUD G., « F.e. computation of a

triaxial specimen using a polycrystalline mode! >>, Computational Materials Science, vol.

, p. 141-157, 1997.

[FEY 98] FEYEL F., «Application du calcul parallèle aux modèles à grand nombre de variables

internes>>, Thèse de Doctorat, École Nationale Supérieure des Mines de Paris, 1998.

[FEY 00] FEYEL F., CHABOCHE J. L., « FE2 multiscale approach for modelling the elastoviscoplastic

behaviour of long fibre SiC!fi composite materials >>, Computer Methods in

Applied Mechanics and Engineering, vol. 183, p. 309-330, 2000.

[FOE 96] FOERCH R., « Un environnement orienté objet pour la modélisation en mécanique

des matériaux>>, PhD thesis, École Nationale Supérieure des Mines de Paris, 1996.

[FOR 98] FOREST S., SAB K., « Cosserat overall modeling of heterogeneous materials >>,

Mechanics Research Communications, vol. 25, p. 449-454, 1998.

[KRU 98] KRU CH S., FOREST S.,« Computation of coarse grain structures using an homogeneous

equivalent medium>>, J. Phys. IV France, vol. 8, p. 197-205, 1998.

[LES 89] LESNE P. M., SA VALLE S.,« An efficient "cycles jump technique" for viscoplastic

structure calculations involving large number of cycles>>, In ET AL. 0., Ed., Computational

Plasticity, 2nd lnt. Conf. on "Computational Plasticity", 1989 , Barcelone.

[NEE 87] NEEDLEMAN A., «A continuum mode! for void nucleation by inclusion debonding

>>, J. of Appt. Mechanics, vol. 54, p. 525-531, 1987.

[NES 00] NESNAS K., SAANOUNI K., « A cycle jumping scheme for numerical integration

of a damage viscoplastic mode! under cyclic loading >>, Revue Européenne des Éléments

Finis, p. in press, 2000.

[PIL 90] PILVIN P.,« Approches multiéchelles pour la prévision du comportement inélastique

des métaux>>, PhD thesis, Université Pierre et Marie Curie, Paris 6, 1990.

[QUI 96] QUILICI S., DÉBORDES 0., « Parallélisation des problèmes d'évolution non

linéaires (plateforme sic) >>, Rapport technique, 1996 , Synthèse des travaux 93-95, saut

technologique <

associées>>.

[QUI 99] QUILICI S., CAILLETAUD G., <

polycrystalline plasticity >>, Comp. Materials Science, vol. 16, p. 383-390, 1999.

[ROU 94] Roux F. X., FARHAT C., << Implicit parallel processing in structural mechanics >>,

Computer Methods in Applied Mechanics and Engineering, vol. 2, n. 1, 1994.

[SAV 78] SA VALLE S., CULIÉ J. P.,<< Méthodes de calcul associées aux lois de comportement

cyclique et d'endommagement>>, La Rech. Aérospatiale,, n. 5, 1978.

[SMI 98] SMIT R., BREKELMANS W., MEIJER H., << Prediction of the mechanical behavior

of nonlinear heterogeneous systems by multi-level finite element modeling >>, Comput.

Methods Appl. Mech. Engrg., vol. 155, p. 181-192, 1998.

Downloads

Published

2001-11-24

How to Cite

Feyel, F. ., & Chaboche, J.-L. . (2001). Multi-scale non-linear FE2 analysis of composite structures: damage and fiber size effects. European Journal of Computational Mechanics, 10(2-4), 449–472. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2777

Issue

Section

Original Article