Elément de poutre multicouche avec glissement d’interface

Authors

  • Blaise Rebora LSC – Laboratoire de Mécanique des Structures et Milieux Continus EPFL – Ecole Polytechnique Fédérale de Lausanne Station 18 – CH-1015 Lausanne
  • François Frey LSC – Laboratoire de Mécanique des Structures et Milieux Continus EPFL – Ecole Polytechnique Fédérale de Lausanne Station 18 – CH-1015 Lausanne

DOI:

https://doi.org/10.13052/REMN.16.559-581

Keywords:

multilayered beam, interlayer slip, large displacements, corotational formulation, material nonlinearity

Abstract

This paper presents a multilayered two node planar beam element, straight or shallow, of Bernoulli type, with an arbitrary number of layers with interlayer slip. Material and geometric nonlinearities are included. Small strains and slips are assumed. Large displacements are dealt with von Karman strain coupled with corotational formulation. No locking appears. Various tests show the capabilities of this element.

Downloads

Download data is not yet available.

References

Batoz J.-L., Dhatt G., Modélisation des structures par éléments finis, Poutres et plaques,

vol. 2, Hermès, Paris, 1990.

Belytschko T., Liu W. K., Moran B., Nonlinear finite elements for continua and structures,

Wiley, 2000.

Carrera E., “Theories and finite elements for multilayered, anisotropic, composite plates and

shells”, Arch. Comput. Meth. Engng., vol. 9, n° 2, 2002, p. 87, Ibid., “Developments,

ideas and evaluations based upon Reissner’s variational theorem in the modelling of

multilayered plates and shells”, Applied Mech. Review, vol. 54, 2001.

Cas B., Saje M., Planinc I., “Nonlinear finite element analysis of composite planar frames

with interlayer slip”, Computers & Structures, vol. 82, 2004, p. 1901-1912.

Crisfield M. A., Non-linear finite element analysis of solids and structures, vol. 1, Wiley

Engesser F., “Ueber verdübelte Balken”, Der Bauingenieur, Heft 8, 1922.

Fazio P., Hussein R. A. M., Ha K. H., “Sandwich beam-columns with interlayer slip”, Eng.

Mech. Div. ASCE, vol. 108, n° EM2, 1982.

Frangi A., Fontana M., “Elasto-plastic model for timber-concrete composite beams with

ductile connection”, Structural Engineering International, n° 1, 2003.

Frey F., Ibrahimbegovic A., Rebora B., Camacho A., Falla Luque C., Les verrouillages de

l’élément de poutre de Bernoulli dans le cas plan, Rapports LSC 92/13, 95/07 et 96/06,

LSC, EPFL, 1992/95/96.

Girhammar U. A., Gopu V. K. A., “Composite beam-columns with interlayer slip, Exact

analysis”, J. Struct. Engng. ASCE, vol. 119, n° 4, 1993.

Gollwitzer T., Gebbeken N., Ein neues FEM-Stabelement für nachgiebige

Verbundquerschnitte, Bericht 03/3 aus dem Konstruktiven Ingenieurbau, Universität der

Bundeswehr München, 2003.

Goodman J. R., Popov E. P., “Layered beam systems with interlayer slip”, J. Struct. Div.

ASCE, vol. 94, n° ST11, 1968.

Heimeshoff B., “Zur Berechnung von Biegeträgern aus nachgiebig miteinander verbundenen

Querschnittsteilen im Ingenieurholzbau”, holz als Roh- und Werkstoff, 45, 1987, p 237-241.

Hübner L., Holzflächentragwerte in Brettstapelbauweise, Diplomarbeit, IBOIS-EPFL,

Lausanne, 2000.

Kamiya F., “Buckling of sheathed walls: nonlinear analysis”, J. Struct. Engng. ASCE,

vol. 114, n° 3, 1987.

Kapania R. K., Raciti S., “Recent advances in analysis of laminated beams and plates”, AIAA

J., vol. 27, n° 7, 1989.

Krawczyk P., Frey F., Zieliński A. P., Rebora B., “Large Deflections of Laminated Beams

with Interlayer Slips”, Eng. Comp., 2006 (submitted).

Kreuzinger H., Träger und Stützen aus nachgiebig verbundenen Querschnittsteilen,

EUROFORTECH (EU Comett Programms), STEP B11 Bemessung und Baustoffe, Holz-

Fachverlag, 1995.

Moehler K., Ueber das Tragverhalten von Biegeträgern und Druckstäben mit

zusammengesetzten Querschnitten und nachgiebigen Verbindungsmitteln, Dissertation,

TU Karlsruhe, 1956.

Natterer J., Hoeft M., Zum Tragverhalten von Holz-Beton-Verbundkonstruktionen,

Forschungsbericht CERS Nr. 1345, EPFL, Lausanne, 1987.

Newmark N. M., Siess C. P., Viest I. M., “Tests and analysis of composite beams with

incomplete interaction”, SESA Proceedings, vol. 9, n° 1, 1951.

Noor A. K., Burton W. S., Bert C. W., “Computational models for sandwich panels and

shells”, Applied Mech. Review, vol. 49, n° 3, 1996, p. 155.

Pirazzi C., Zur Berechnung von Holzschalen in Brettrippenbauweise mit elastischem

Verbundquerschnitt, Thèse de doctorat n° 3229, EPFL, Lausanne, 2005.

Pischl R., “Ein Beitrag zur Berechnung zusammengesetzter hölzerner Biegeträger”, Der

Bauingenieur, 43, 1968, Heft 12.

Richard R. M., A study of structural systems having nonlinear elements, PhD thesis, Purdue

Univ., Lafayette, 1961.

Schelling W., Die Berechnung nachgiebig verbundener zusammengesetzter Biegeträger im

Ingenieurholzbau, Dissertation, TU Karlsruhe, 1968.

StüssI F., “Beiträge zur Berechnung und Ausbildung zusammengesetzter Vollwandträger”,

Schweizerische Bauzeitung, Band 121, Nr. 9, S., 1943.

Stüssi F., Zusammengesetzte Vollwandträger Mémoires de l’AIPC, VIII, Zürich 1947.

Thompson E. G., Goodman J. R., VAnderbilt M. D., “Finite element analysis of layered wood

systems”, J. Struct. Div. ASCE, vol. 101, n° ST12, 1975.

Vanderbilt M. D., Goodman J. R., Criswell M. E., “Service and overload behavior of wood

joist floor systems”, J. Struct. Div. ASCE, vol. 100, n° ST1, 1974.

Wheat D. L., Calixto J. M., “Nonlinear analysis of two-layered wood members with interlayer

slip”, J. Struct. Engng. ASCE, vol. 120, n° 6, 1994.

Yam L. C. P., Chapman J. C., “The inelastic behaviour of continuous composite beams of

steel and concrete”, Proc. Instn Civ. Engrs, vol. 53, 1972.

Downloads

Published

2007-08-22

How to Cite

Rebora, B. ., & Frey, F. . (2007). Elément de poutre multicouche avec glissement d’interface. European Journal of Computational Mechanics, 16(5), 559–581. https://doi.org/10.13052/REMN.16.559-581

Issue

Section

Original Article