Une approche unifiee de Ia modelisation des structures complexes : les elements finis avec degre de Iiberte de rotation

Authors

  • Adnan lbrahimbegovi Departement de genie civil Ecole polytechnique federa/e de Lausanne EPFL, DCC, LSC, CH-1015 Lausanne, Suisse
  • Francois Frey Departement de genie civil Ecole polytechnique federa/e de Lausanne EPFL, DCC, LSC, CH-1015 Lausanne, Suisse
  • Blaise Rebora Departement de genie civil Ecole polytechnique federa/e de Lausanne EPFL, DCC, LSC, CH-1015 Lausanne, Suisse

Keywords:

Finite elements for beams, plates, membranes and solids, rotational degree of freedom, junctions

Abstract

In FE models of complex structural ~ystem.s, different element& need to be used such as: beams, membranes, solids, plates and shells. Elements of different kind, based on classical formulations, generally do not share the same nodal degrees of freedom, which complicate& construction of a compatible model. To resolve this modeling problem, we propose a family of finite elements ba.sed on a non-classical variational formulation of classical continuum, in which an independent rotation field is present. Along with a modified method of incompatible modes, this provides a unified basis for construction of variou.s finite elements with the same nodal degree11 of freedom, which can be freely combined. More specifically, new membrane, solid and triangular plate elements are given in the paper. The performance of presented elements is evaluated on a set of numerical examples, which include the numerical studies of the element junctions.

 

Downloads

Download data is not yet available.

References

(ALL 84] ALLMAN D.J., A Compatible Triangular Element Including Vertex Rotations

for Plane Elasticity Problems, Comput. Struct., 19, 1984, p. 1-8.

[BAT 90] BATOZ J.-L. et DHATT G., Modelisation des structures par elements

finis, Hermes, Paris, 1990.

[BAT 81] BATHE K.J. and L.W. HO, Some Results in the Analysis of Thin Shell

Structures, in Nonlinear Finite Element Analysis in Structural Mechanics, ( eds.

W. Wunderlich et a!.), Springer, Berlin, 1981, p. 122-150.

[BAT 82] BATHE K.J., Finite Element Procedures in Engineering Analysis, Prentice

Hall, Englewood Cliffs, NJ, 1982.

[BBH 80] BATOZ J.L., BATHE K.J. and L.W. HO, A Study of Three Node Trinagular

Plate Bending Elements, Int. J. Numer. Methods Eng., 15, 1980, p.

-1812.

[BEL 85] BELYTSCHKO T., H. STOLARSKI, W.K. LIU, N. CARPENTER and

J.S. ONG, Stress Projection for Membrane and Shear Locking in Shell Finite

Elements, Comput. Methods Appl. Mech. Eng., 51, 1985, p. 221-258.

[BER 89] BERNADOU M., S. FOYOLLE and F. LENE, Numerical Analysis of

Junctions Between the Plates, Comput. Methods Appl. Mech. Eng., 74, 1989,

p. 307-326.

[BRE 86] BREZZI F. and K.J. BATHE, Studies of Finite Element ProceduresThe

Inf-Sup Conditions, Equivalent Forms and Applications, in Reliability

of Methods for Engineering Analysis (eds. K.J. Bathe and D.R.J. Owen),

Pineridge Press, 1986, p. 7-219.

[CIA 87] CIARLET P.G., H. LED RET et R. NZENGWA, Modelisation de Ia jonction

entre un corps elastique tridimensionel et une plaque, C.R. Acad. Sci.

Paris, 305 (I), 1987, p. 55-58.

[COO 91] COOK R. D., Beam Cantilevered From Elastic Support: Finite -Element

Modeling, Commun. Appl. Numer. Methods, 7, 1991, p. 621-623.

[DON 60] O'DONNELL W.J., The Additional Deflection of a Cantilever due to the

Elasticity of the Support, J. Appl. Mech., 27, 1960, p. 461-464.

[FRE 89] FREY F., Shell Finite Elements with Six Degrees of Freedom per Node,

in Analytical and Computational Models for Shells (eds. A.K. Ncar, T. Belytschko,

J.C. Sima), ASME, 1989, p. 291-317.

[FRE 91] FREY F. et al., FELINA Finite Element Linear and Incremental Nonlinear

Analysis, LSC Report 91/14, Swiss Federal Institute of Technology, Lausanne,

[HUG 81] HUGHES T.J.R. and T.E. TEZDUYAR, Finite Elements Based Upon

Mindlin Plate Theory with Particular Reference to the Four-Node Bilinear

Isoparametric Element, J. Appl. Mech., 46, 1981, p. 587-596.

[HUG 87] HUGHES T.J.R., The Finite Element Method: Linear Static and Dynamic

Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1987.

[HUG 89] HUGHES T.J.R. and F. BREZZI, On Drilling Degrees of Freedom, Comput.

Methods Appl. Mech. Eng., 72, 1989, p. 105-121.

[IBR 90] IBRAHIMBEGOVIC A., R.L. TAYLOR and E.L. WILSON, A Robust

Membrane Quadrilateral Element With Drilling Degrees of Freedom, Int. J.

Numer. Methods Eng., 30, 1990, p. 445-457.

[IBR 91a] IBRAHIMBEGOVIC A. and E.L. WILSON, A Modified Method of Incompatible

Modes, Commun. Appl. Numer. Methods, 7, 1991, p. 187-194.

[IBR 91b] IBRAHIMBEGOVIC A. and E.L. WILSON, Thick Shell and Solid Finite

Elements with Independent Rotation Fields, Int. J. Numer. Methods Eng., 31,

, p. 1393-1414.

[IBR 91c] IBRAHIMBEGOVIC A. and E.L. WILSON, A Unified Formulation for

Triangular and Quadrilateral Thin Shell Finite Elements with Six Degrees of

Freedom, Commun. Appl. Numer. Methods, 7, 1991, p. 1-9.

[IBR 92a] IBRAHIMBEGOVIC A., Plate Quadrilateral Finite Element With Incompatible

Modes, Commun. Appl. Numer. Methods, 8, 1992, p. 497- 504.

[IBR 93a] IBRAHIMBEGOVIC A., Mixed Finite Element for Plane Problems in

Finite Elasticity, Comput. Methods Appl. Mech. Eng., 106, 1993, in press.

[IBR 93b] IBRAHIMBEGOVIC A., Quadrilateral Finite Elements for Analysis of

Thick and Thin Plates, Comput. Methods Appl. Mech. Eng., 93, 1993, in

press.

[IBR 93c] IBRAHIMBEGOVIC A., Stress Resultant Geometrically Nonlinear Shell

Theory With Drilling Rotations. Part I: A Consistent Formulation, Comput.

Methods Appl. Mech. Eng., 1993, submitted.

[IBF 93a] IBRAHIMBEGOVIC A. and F. FREY, Finite Element Analysis of Linear

and Nonlinear Planar Deformations of Elastic Initially Curved Beams, Int. J.

Numer. Methods Eng., 36, 1993, in press.

[IBF 93b] IBRAHIMBEGOVIC A. and F. FREY, An Efficient Implementation of

Stress Resultant Plasticity in Finite Element Analysis of Reissner-Mindlin Plates,

Int. J. Numer. Methods Eng., 36, 1993, p. 301-322.

[IBF 93c] IBRAHIMBEGOVIC A. and F. FREY, Geometrically Nonlinear Method

of Incompatible Modes in Application to Finite Elasticity With Independent

Rotations, Int. J. Numer. Methods Eng., 37, 1993, in press.

(KWA 92] KWAN A. K. H., Rotational dofin the Frame Method Analysis of Coupled

Shear/Core Wall Structure, Computer. Struct., 14, 1992, p. 989-1005.

(MUS53] MUSKHELISHVILI N .I., Some Basic Problems of the Mathematical Theory

of Elasticity, P. Noordhoff, Groningen, Holland, 1953.

(REI 65] REISSNER E., A Note on Variational Principles in Elasticity, Int. J. Solids

Struct., 1, 1965, p. 93-95.

(SCO 61] SCORDELIS A.C., E.L. CROY and I.R. STUBBS, Experimental and

Analytical Study of a Folded Plate, ASCE J. Struct. Div., 87, 1961, p. 139-

(TAY 86] TAYLOR R.L., J.C. SIMO, O.C. ZIENKIEWICZ and A.C. CHAN, The

Patch Test: A Condition for Assessing Finite Element Convergence, Int. J.

Numer. Methods Eng., 22, 1986, p. 39-62.

(TES 81] TESSLER A. and S.B. DONG, On a Hierarchy of Conforming Timoshenko

Beam Elements, J. Comput. Struct., 14, 1981, p. 335-344.

[TSO 73] TSO W.K. and J.K. BISWAS, General Analysis of Nonplanar Coupled

Shear Walls, ASCE J. Struct. Div., 99, 1973, p. 365-380.

[WIL 73] WILSON E.L., R.L. TAYLOR, W.P. DOHERTY and J. GHABOUSSI,

Incompatible Displacement Models, in Numerical and Computer Methods in

Structural Mechanics, (eds. S.J. Fenves, N. Perrone, A.R. Robinson and W.C.

Schnobrich), Academic Press, 1973, p. 43-57.

[WIL 74] WILSON E.L., The Static Condensation Algorithm, Int. J. Numer. Methods

Eng., 8, 1974, p. 9-203.

[ZIE 91] ZIENKIEWICZ O.C. and R.L. TAYLOR, The Finite Element Method:

Solid and Fluid Mechanics, Dynamics and Non-linearity, McGraw-Hill, London,

Downloads

Published

1993-03-27

How to Cite

lbrahimbegovi, A., Frey, F. ., & Rebora, B. . (1993). Une approche unifiee de Ia modelisation des structures complexes : les elements finis avec degre de Iiberte de rotation. European Journal of Computational Mechanics, 2(3), 257–286. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3653

Issue

Section

Original Article