Numerical propagation of dynamic cracks using X-FEM

Authors

  • Ionel Nistor Ecole Nationale d’Ingénieurs de Tarbes, Laboratoire Génie de Production 47 Av. d’Azereix, BP 1629, F-65016 Tarbes cedex
  • Olivier Pantalé Ecole Nationale d’Ingénieurs de Tarbes, Laboratoire Génie de Production 47 Av. d’Azereix, BP 1629, F-65016 Tarbes cedex
  • Serge Caperaa Ecole Nationale d’Ingénieurs de Tarbes, Laboratoire Génie de Production 47 Av. d’Azereix, BP 1629, F-65016 Tarbes cedex

DOI:

https://doi.org/10.13052/REMN%20–%2016/2007

Keywords:

partition of unity, extended finite element method, dynamic crack propagation, cohesive model

Abstract

This paper presents an application of the eXtended Finite Element Method for numerical modeling of the dynamic cracks propagation. The numerical cracks representation is adapted to the time-dependent mechanical formulation, using the Heaviside step function for completely cutted elements and the cohesive model for crack tips. In order to find the propagation parameters, a crack evolution model is proposed. The numerical implementation is achieved in new explicit FE module. A numerical example is proposed for proving the computational efficiency of this new module.

Downloads

Download data is not yet available.

References

Babuska I., Melenk J., « The Partition of Unity Method », International Journal for Numerical

Methods in Engineering, vol. 40, p. 727-758, 1997.

Belytschko T., Black T., « Elastic Crack Growth in Finite Elements withMinimal Remeshing »,

International Journal for Numerical Methods in Engineering, vol. 45, p. 601-620, 1999.

Belytschko T., Chen H., « Singular enrichment finite element method for elastodynamic crack

propagation », International Journal of Computational Methods, vol. 1, n° 1, p. 1-15, 2004.

Belytschko T., Chen H., Xu J., Zi G., « Dynamic Crack Propagation Based on Loss of Hyperbolicity

and a New Discontinuous Enrichment », International Journal for Numerical

Methods in Engineering, vol. 58, p. 1873-1905, 2003.

Belytschko T., Fish J., Engelmann B., « A Finite Element with Embedded Localisation Zones »,

Computer Methods in Applied Mechanics and Engineering, vol. 70, p. 59-89, 1988.

Borst R., Remmers J. J., Needleman A., «Mesh-independent discrete numerical representations

of cohesive-zone models », Engineering Fracture Mechanics, vol. 73, p. 160-177, 2006.

Camacho G. T., Ortiz M., « Computational modeling of impact damage in brittle materials »,

International Journal of Solids and Structures, vol. 33, p. 2899-2938, 1996.

Daux C., Moës N., Dolbow J., Sukumar N., Belytschko T., « Arbitrary Branched and Intersecting

Cracks with the Extended Finite Element Method », International Journal for Numerical

Methods in Engineering, vol. 48, p. 1741-1760, 2000.

Dolbow J. E., Devan A., « Enrichment of Enhanced Assumed Strain Approximations for Representing

Strong Discontinuities: Addresing Volumetric Incompressibility and the Discontinuous

Patch test », International Journal for Numerical Methods in Engineering, vol. 59,

p. 47-67, 2004.

Dvorkin. E. N., « Finite Elements with Displacements Interpolated Embedded Localization

Lines Insensitive to Mesh Size and Distorsions », International Journal for Numerical

Methods in Engineering, vol. 30, p. 541-564, 1990.

Elguedj T., Gravouil A., Combescure A., « Appropriate extended functions for X-FEM simulation

of plastic fracture mechanics », Computer Methods in Applied Mechanics and Engineering,

vol. 195, p. 501-515, 2006.

Hulbert G. M., Chung J., « Explicit Time Integration for Structural Dynamics with Optimal

Numerical Dissipation », Computer Methods in Applied Mechanics and Engineering, vol.

, p. 175-188, 1996.

Jirasek M., « Comparative Study on Finite Elements with Embedded Discontinuities », Computer

Methods in Applied Mechanics and Engineering, vol. 188, p. 307-330, 2000.

Menouillard T., Réthoré J., A.Combescure, Bung H., « Efficient explicit time stepping of the

eXtended Finite ElementMethod (X-FEM) », International Journal for NumericalMethods

in Engineering, 2006.

Moës N., Belytschko T., « Extended Finite Element Method for Cohesive Crack growth »,

Engineering Fracture Mechanics, vol. 69, p. 813-833, 2002.

Moës N., Dolbow J., Belytschko T., « A Finite Element Method for Crack Growth without

Remeshing », International Journal for Numerical Methods in Engineering, vol. 46, p. 131-

, 1999.

Nistor I., Identification expérimentale et simulation numérique de l’endommagement en dynamique

rapide: application aux structures aéronautiques, PhD thesis, Institut National

Polytechnique de Toulouse, 2005.

Nistor I., Pantalé O., Caperaa S., Sattouf C., « Identification of a Dynamic Viscoplastic Flow

Law Using a Combined Levenberg-Marquardt and Monte-Carlo Algorithm », VII international

Conference on Computational Plasticity, Barcelone, 2003.

OrtizM., Leroy Y., Needleman A., « A Finite ElementMethod for Localized Failure Analysis »,

Computer Methods in Applied Mechanics and Engineering, vol. 61, p. 189-214, 1987.

Ortiz M., Pandolfi A., « Finite-Deformation Irreversible Cohesive Elements for Threedimensional

Crack-Propagation Analysis », International Journal for Numerical Methods

in Engineering, vol. 44, p. 1267-1282, 1999.

Pandolfi A., Krysl P., Ortiz M., « Finite Element Simulation of Ring Expansion and Fragmentation

», International Journal of Fracture, vol. 95, n° 1-4, p. 279-297, 1999.

Pantalé O., « An Object-Oriented Programming of an Explicit Dynamics Code: Application to

Impact Simulation », Advances in Engineering Software, vol. 33, n° 5, p. 275-284, 8, 2002.

Pantalé O., « Parallelization of an Object-Oriented FEM Dynamics Code: Influence of the

strategies on the SpeedUp », Advances in Engineering Software, vol. 36, n° 6, p. 361-373,

Remmers J., Borst R., Needleman A., « Simulation of Fast Crack Growth Using Cohesive

Segments », VII International Conference on Computational Plasticity, COMPLAS, 2003.

Réthoré J., Gravouil A., Combescure A., « A stable numerical scheme for the finite element

simulation of dynamic crack propagation with remeshing », Computer Methods in Applied

Mechanics and Engineering, vol. 193, p. 4493-4510, 2004.

Réthoré J., Gravouil A., Combescure A., « An energy-conserving scheme for dynamic crack

growth using the eXtended finite element method », International Journal for Numerical

Methods in Engineering, vol. 63, p. 631-659, 2005.

Simo J., Oliver J., Armero F., « An Analysis of Strong Discontinuities Induced by Strain Softening

in Rate-Independent Inelastic Solids », Computational Mechanics, vol. 12, p. 277-296,

Sukumar N., Moës N., Moran B., Belytschko T., « Extended Finite Element Method for Three-

Dimensional Crack Modelling », International Journal for Numerical Methods in Engineering,

vol. 48, p. 1549-1570, 2000.

Sukumar N., Prévost J.-H., « Modelling Quasi-Static Crack Growth with the Extended Finite

Element Method. Part I: Computer Implementation », International Journal of Solids and

Structures, vol. 40, p. 7513-7537, 2003.

Xu X. P., Needleman A., « Numerical Simulation of Fast Crack Growth in Brittle Solids »,

Journal of the Mechanics and Physics of Solids, vol. 42, p. 1397-1434, 1994.

Downloads

Published

2007-10-26

How to Cite

Nistor, I. ., Pantalé, O. ., & Caperaa, S. . (2007). Numerical propagation of dynamic cracks using X-FEM. European Journal of Computational Mechanics, 16(2), 183–198. https://doi.org/10.13052/REMN – 16/2007

Issue

Section

Original Article