A methodology for large scale finite element models, including multi-physic, multi-domain and multi-timestep aspects

Authors

  • Laurent Menanteau P.E.A.R.L. - Alstom Transport, Rue du Dr Guinier, BP 4, F-65600, Séméac
  • Olivier Pantalé L.G.P. - E.N.I. de Tarbes, 47, av. d’Azereix, BP 1629, F-65016 Tarbes cedex
  • Serge Caperaa L.G.P. - E.N.I. de Tarbes, 47, av. d’Azereix, BP 1629, F-65016 Tarbes cedex

Keywords:

domain decomposition method, finite element, object-oriented programming, parallelization, multi-time stepping

Abstract

This works concerns the development of a virtual prototyping tool dedicated to electro-thermo-mechanical simulation of power converters. The FEM code, written using an object-oriented language, includes a dual Schur Domain Decomposition Method. The solving of problems including floating subdomains can be performed in steady-state cases, whereas one can couple multi-timestep implicit and explicit integration schemes in transient analysis. The last part of this work is about the study of an industrial benchmark concerning the power converters used in railway transport: the electro-thermal simulation of a switch in transient analysis. This example allows to compare different strategies of tearing into subdomains and the use of different timesteps on the same structure.

Downloads

Download data is not yet available.

References

Chandra R., Dagum L., Kohr D., Maydan D., McDonald J., Menon R., Parallel Programming

in OpenMP, Academic Press, 2001.

Chow P., Bailey C., Addison C., “ Solving non-linear electronic packaging problems on parallel

computers using domain decomposition”, 12th International Conference on Domain

Decomposition Methods, 2001.

Chow P., Lai C. H., “ Electronic Packaging and Reduction in Modelling Time Using Domain

Decomposition”, 15th International Conference on Domain Decomposition Methods, 2003.

Combescure A., Gravouil A., “ A numerical scheme to couple subdomains with different timesteps

for predominantly linear transient analysis”, Computer Methods in Applied Mechanics

and Engineering, vol. 191, p. 1129-1157, 2002.

Farhat C., “ A method of finite element tearing and interconnecting and its parallel solution

algorithm”, International Journal of Numerical Methods in Engineering, vol. 32, p. 1205-

, 1991.

Farhat C., Lesoinne M., LeTallec P., Pierson K., Rixen D., “ FETI-DP: a dual-primal unified

FETI method - part I: A fester alternative to the two-level FETI method”, International

Journal of Numerical Methods in Engineering, vol. 50(7), p. 1523-1544, 2001.

Farhat C., Roux F. X., Implicit parallel processing in structural mechanics, Computational

Mechanics Advances 2, 1994.

Fragakis Y., Papadrakakis M., A unified framework for formulating Domain Decomposition

Methods in Structural Mechanics, Technical report, Institute of Structural Analysis and

Seismic Research - National Technical University Athens, 2002.

Fragakis Y., Papadrakakis M., “ The mosaic of high performance domain decomposition methods

for structural mechanics: formulation, interrelation and numerical efficiency of primal

and dual methods”, Computer Methods in Applied Mechanics and Engineering, vol. 195,

n° 35-36, p. 3799-3830, 2003.

Gravouil A., Méthodes multi-échelles en temps et en espace avec décomposition de domaines

pour la dynamique non-linéaire des structures, PhD thesis, LMT - ENS Cachan, 2000.

Hibbitt K., Sorensen I., Anaqus Theory Manual Version 5.7, HKS, 1997.

Hilber H. M., Hughes T. J. R., “ Collocation, dissipation and overshoot for time integration

schemes in structural dynamics”, Earthquake Engineering and Structural Dynamics, vol. 6,

p. 99-117, 1978.

Hoppe R. H.W., “ Adaptative multigrid and domain decomposition methods in the computation

of electromagnetic fields”, Journal of Computational and Applied Mathematics, vol. 168,

p. 245-254, 2004.

Hoppe R. H. W., Iliash Y., Ramminger S., Wachutka G., “ Domain Decomposition Methods in

Electrothermomechanical Coupling Problems”, 15th International Conference on Domain

Decomposition Methods, 2003.

Hu Y. C., Lu A. L. H., Cox A. L., Zwaenepoel W., “ OpenMp for networks of SMPs”, Journal

of parallel and distributed computing, vol. 60, n° 12, p. 1512-1530, 2000.

Hughes T. J. R., Liu W. K., “ Implicit-Explicit Finite Elements in Transient Analysis: Implementation

and Numerical Examples”, Journal of Applied Mechanics, vol. 45, p. 375-378,

June, 1978a.

Hughes T. J. R., Liu W. K., “ Implicit-Explicit Finite Elements in Transient Analysis: Stability

Theory”, Journal of Applied Mechanics, vol. 45, p. 371-374, June, 1978b.

Incropera F. P., Dewitt D. P., Introduction to Heat Transfert, 4th edn, John Wiley & Sons, 2002.

Kron G., Diakoptics: The piecewise solution of large-scale systems, MacDonald and Co, 1963.

Lewis R. W., Schrefler B. A., “ The Finite Element Method in the Static and Dynamic Deformation

and Consolidation of Porous Media”, Meccanica, vol. 34(3), p. 231-232, 1999.

Mussard L., Tounsi P., Austin P., Dorkel J. M., Antonini E., “ New Electro-Thermal Modeling

Method for IGBT PowerModule”, IEEE Bipolar/BiCMOS Circuit and Technology Meeting

, 2004.

Pantalé O., “ An object-oriented programming of an explicit dynamics code: application to

impact simulation”, Advances in Engineering Software, vol. 33, p. 297-306, 2002.

Pantalé O., “ Parallelization of an Object-Oriented FEM Dynamics Code: Influence of the

strategies on the SpeedUp”, Advances in Engineering Software, vol. 36, n° 6, p. 361-373,

Papadrakakis M., Parallel Solution Methods in Computational Mechanics, Chapter 3: Domain

Decomposition Techniques for Computational Structural Mechanics, edited by M. Papadrakakis,

John Wiley & Sons Ltd, 1997.

Pérez C., Priol T., Ribes A., “ A Parallel CORBA Component Model for Numerical Code

Coupling”, The International Journal of High Performance Computing Applications, vol.

(4), p. 417-429, 2003.

Rixen D. J., “ Dual Schur Complement Method for Semi-Definite Problems”, Contemporary

Mathematics, 1998.

Roux F. X., “ Méthodes de résolution par sous-domaines en statique”, La Recherche Aérospatiale,

vol. 1, p. 37-48, 1990.

Schwarz H. A., “ Uber einige Abbildungsaufgaben”, Gesammelte Mathematische Abhandlungen,

vol. 11, p. 65-83, 1869.

Smolinski P., Palmer T., “ Procedures for multi-time step integration of element-free Galerkin

methods for diffusion problems”, Computers and Structures, vol. 77, p. 171-183, 2000.

Downloads

Published

2006-06-30

How to Cite

Menanteau, L. ., Pantalé, O., & Caperaa, S. . (2006). A methodology for large scale finite element models, including multi-physic, multi-domain and multi-timestep aspects. European Journal of Computational Mechanics, 15(7-8), 799–824. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2047

Issue

Section

Original Article

Most read articles by the same author(s)