A methodology for large scale finite element models, including multi-physic, multi-domain and multi-timestep aspects
Keywords:
domain decomposition method, finite element, object-oriented programming, parallelization, multi-time steppingAbstract
This works concerns the development of a virtual prototyping tool dedicated to electro-thermo-mechanical simulation of power converters. The FEM code, written using an object-oriented language, includes a dual Schur Domain Decomposition Method. The solving of problems including floating subdomains can be performed in steady-state cases, whereas one can couple multi-timestep implicit and explicit integration schemes in transient analysis. The last part of this work is about the study of an industrial benchmark concerning the power converters used in railway transport: the electro-thermal simulation of a switch in transient analysis. This example allows to compare different strategies of tearing into subdomains and the use of different timesteps on the same structure.
Downloads
References
Chandra R., Dagum L., Kohr D., Maydan D., McDonald J., Menon R., Parallel Programming
in OpenMP, Academic Press, 2001.
Chow P., Bailey C., Addison C., “ Solving non-linear electronic packaging problems on parallel
computers using domain decomposition”, 12th International Conference on Domain
Decomposition Methods, 2001.
Chow P., Lai C. H., “ Electronic Packaging and Reduction in Modelling Time Using Domain
Decomposition”, 15th International Conference on Domain Decomposition Methods, 2003.
Combescure A., Gravouil A., “ A numerical scheme to couple subdomains with different timesteps
for predominantly linear transient analysis”, Computer Methods in Applied Mechanics
and Engineering, vol. 191, p. 1129-1157, 2002.
Farhat C., “ A method of finite element tearing and interconnecting and its parallel solution
algorithm”, International Journal of Numerical Methods in Engineering, vol. 32, p. 1205-
, 1991.
Farhat C., Lesoinne M., LeTallec P., Pierson K., Rixen D., “ FETI-DP: a dual-primal unified
FETI method - part I: A fester alternative to the two-level FETI method”, International
Journal of Numerical Methods in Engineering, vol. 50(7), p. 1523-1544, 2001.
Farhat C., Roux F. X., Implicit parallel processing in structural mechanics, Computational
Mechanics Advances 2, 1994.
Fragakis Y., Papadrakakis M., A unified framework for formulating Domain Decomposition
Methods in Structural Mechanics, Technical report, Institute of Structural Analysis and
Seismic Research - National Technical University Athens, 2002.
Fragakis Y., Papadrakakis M., “ The mosaic of high performance domain decomposition methods
for structural mechanics: formulation, interrelation and numerical efficiency of primal
and dual methods”, Computer Methods in Applied Mechanics and Engineering, vol. 195,
n° 35-36, p. 3799-3830, 2003.
Gravouil A., Méthodes multi-échelles en temps et en espace avec décomposition de domaines
pour la dynamique non-linéaire des structures, PhD thesis, LMT - ENS Cachan, 2000.
Hibbitt K., Sorensen I., Anaqus Theory Manual Version 5.7, HKS, 1997.
Hilber H. M., Hughes T. J. R., “ Collocation, dissipation and overshoot for time integration
schemes in structural dynamics”, Earthquake Engineering and Structural Dynamics, vol. 6,
p. 99-117, 1978.
Hoppe R. H.W., “ Adaptative multigrid and domain decomposition methods in the computation
of electromagnetic fields”, Journal of Computational and Applied Mathematics, vol. 168,
p. 245-254, 2004.
Hoppe R. H. W., Iliash Y., Ramminger S., Wachutka G., “ Domain Decomposition Methods in
Electrothermomechanical Coupling Problems”, 15th International Conference on Domain
Decomposition Methods, 2003.
Hu Y. C., Lu A. L. H., Cox A. L., Zwaenepoel W., “ OpenMp for networks of SMPs”, Journal
of parallel and distributed computing, vol. 60, n° 12, p. 1512-1530, 2000.
Hughes T. J. R., Liu W. K., “ Implicit-Explicit Finite Elements in Transient Analysis: Implementation
and Numerical Examples”, Journal of Applied Mechanics, vol. 45, p. 375-378,
June, 1978a.
Hughes T. J. R., Liu W. K., “ Implicit-Explicit Finite Elements in Transient Analysis: Stability
Theory”, Journal of Applied Mechanics, vol. 45, p. 371-374, June, 1978b.
Incropera F. P., Dewitt D. P., Introduction to Heat Transfert, 4th edn, John Wiley & Sons, 2002.
Kron G., Diakoptics: The piecewise solution of large-scale systems, MacDonald and Co, 1963.
Lewis R. W., Schrefler B. A., “ The Finite Element Method in the Static and Dynamic Deformation
and Consolidation of Porous Media”, Meccanica, vol. 34(3), p. 231-232, 1999.
Mussard L., Tounsi P., Austin P., Dorkel J. M., Antonini E., “ New Electro-Thermal Modeling
Method for IGBT PowerModule”, IEEE Bipolar/BiCMOS Circuit and Technology Meeting
, 2004.
Pantalé O., “ An object-oriented programming of an explicit dynamics code: application to
impact simulation”, Advances in Engineering Software, vol. 33, p. 297-306, 2002.
Pantalé O., “ Parallelization of an Object-Oriented FEM Dynamics Code: Influence of the
strategies on the SpeedUp”, Advances in Engineering Software, vol. 36, n° 6, p. 361-373,
Papadrakakis M., Parallel Solution Methods in Computational Mechanics, Chapter 3: Domain
Decomposition Techniques for Computational Structural Mechanics, edited by M. Papadrakakis,
John Wiley & Sons Ltd, 1997.
Pérez C., Priol T., Ribes A., “ A Parallel CORBA Component Model for Numerical Code
Coupling”, The International Journal of High Performance Computing Applications, vol.
(4), p. 417-429, 2003.
Rixen D. J., “ Dual Schur Complement Method for Semi-Definite Problems”, Contemporary
Mathematics, 1998.
Roux F. X., “ Méthodes de résolution par sous-domaines en statique”, La Recherche Aérospatiale,
vol. 1, p. 37-48, 1990.
Schwarz H. A., “ Uber einige Abbildungsaufgaben”, Gesammelte Mathematische Abhandlungen,
vol. 11, p. 65-83, 1869.
Smolinski P., Palmer T., “ Procedures for multi-time step integration of element-free Galerkin
methods for diffusion problems”, Computers and Structures, vol. 77, p. 171-183, 2000.