Modélisation de la loi de comportement hyperélastique transversalement isotrope des élastomères

Authors

  • Fakhreddine Dammak U2MP, Unité de mécanique, Modélisation et Production, Département de génie mécanique, ENIS, Sfax, 3038, Tunisie
  • Amine Regaieg U2MP, Unité de mécanique, Modélisation et Production, Département de génie mécanique, ENIS, Sfax, 3038, Tunisie
  • Imen Kamoun Kallel U2MP, Unité de mécanique, Modélisation et Production Département de Technologie, IPEIS, Sfax, BP 805, 3018 Sfax Tunisie
  • Abderrazak Dhieb U2MP, Unité de mécanique, Modélisation et Production, Département de génie mécanique, ENIS, Sfax, 3038, Tunisie

DOI:

https://doi.org/10.13052/REMN%20%2016/2007//

Keywords:

elastomer, hyperelasticity, isotropic, transversely isotropic, finit element

Abstract

This paper presents a detailed description of the computer implementation of a fully incompressible isotropic and transversely isotropic hyperelastic behavior. The approach is based on the fiber reinforced composites continuum theory. As an extension of the isotropic hyperelasticity, it is assumed that the strain energy function is decomposed into an isotropic and an anisotropic components. Closed form expressions for the elasticity tensors in incompressible plane stress are given for isotropic and transversely isotropic cases. Numerical examples are presented to illustrate the performance of these expressions.

Downloads

Download data is not yet available.

References

Aît Houcine N., Approche globale de la mécanique de la rupture appliquée aux élastomères,

Thesis, de l’Université des Sciences et Technologies de Lille, France, 1996.

Bonet J., Burton A. J., “A Simple Orthotropic, Transversely Isotropic Hyperelastic

Constitutive Equation for Large Strain Computations”, Computer Methods in Applied

Mechanics and Engineering, vol. 162, 1998, p. 151-164.

Cazacu O., “A new hyperelastic model for transversely isotropic solids”, Mathematik und

Physik ZAMP, vol. 53, 2002, p. 901-911.

Chevaugeon N., Verron E., Peseux B., « Construction d’une loi de Comportement Isotrope

Transverse pour la simulation du Thermoformage de Thermoplastiques Charges de

Fibres », XVe Congrés Français de Mécanique, France, 2001, p. 259-264.

Chevaugeon N., Verron E., Peseux B., “Finite element analyis of nonlinear transversely

isotropic hyperelastic membranes for thermoforging applications”, European Congres in

Computation Methods in Applied Science and Engineering, ECCOMAS 2000, Barcelona,

September 2000.

Ekh M., Runesson K., “Modeling and numerical issues in hyperelasto-plasticity with

anisotropy”, International Journal of Solids and Structures, vol. 38, 2001, p. 9461-9478.

Gasser T.C., Holzapfel G.A., “A rate-independent elastoplastic constitutive model for fiberreinforced

composites at finite strains: continuum basis, algorithmic formulation and

finite element implementation”, Computational Mechanics, 2002.

Gruttmann F., Taylor R. L., “Theory and Finite Element Formulation of Rubberlike

Membrane Shells Using Principal Stretches”, International Journal for Numerical

Methods in Engineering, vol. 35, 1992, p. 1111-1126.

Holzapfel G. A., Non linear solid mechanics, Wiley, 2000.

Holzapfel G. A., Eberlein R., Wiriggers P., Weizsäcker H. W., “Large strain analysis of soft

biological membranes: Formulation and finite element analysis”, Computer Methods in

Applied Mechanics and Engineering, vol. 132, 1996, p. 45-61.

Kyriacou S. K., Schwab C., Humphrey J. D., “Finite Element Analysis of Nonlinear

Orthotropic Hyperelastic Membranes”, Comput. Mech., vol. 18, 1996, p. 269-278.

Limbert G., Taylor M., “On the constitutive modeling of biological soft connective tissues, A

general theoretical framework and explicit forms of the tensors of elasticity for strongly

anisotropic continuum fiber-reincorced composites at finite strain”, International Journal

of Solids and Structures, vol. 39, 2002, p. 2343-2358.

Lürding D., Basar Y., Hanskötter U., “Application of transversly isotropic mateials to multilayer

shell elements undergoing finite rotations and large strains”, International Journal

of Solids and Structures, vol. 38, 2001, p. 9493-9503.

Marvalova B., Urban R., “Identification of orthotropic hyperelastic material properties of

cord-rubber cylindrical air-spring, Experimental Stress Analysis”, 39 International

Conference, Czech Republic, 2001.

Miehe C., “Aspect of the Formulation and Finite Element Implementation of Large Strain

Isotropic Elasticity”, International Journal for Numerical Methods in Engineering, 37,

vol. 37, 1994, p. 1981-2004.

Reese S., “Meso-macro modelling of fibre-reinforced rubber-like composites exhibiting large

elastoplastic deformation”, International Journal of Solids and Structures, vol. 40, 2003,

p. 951-980.

Reese S., Raible T., Wriggers P., “Finite element modelling of orthotropic material behaviour

in pneumatic membranes”, International Journal of Solids and Structures, vol. 38, 2001,

p. 9525-9544.

Simo J. C., Taylor R. L., “Quasi-incompressible finite elasticity in principal stretches:

Continuum basis and numerical algorithms”, Computer Methods in Applied Mechanics

and Engineering, vol. 85, 1991, p. 273-310.

Spencer A. J. M., “Constitutive Theory for Strongly Anisotropic Solids”, A. J. M. Spencer

(Ed.), Continuum Theory of the Mechanics of Fiber-Reinforced Composites, CISM

Courses and Lectures n° 282, International Center for Mechanical Sciences, Springer-

Verlag, Wien, 1984, p. 1-32.

Walton J. R., Wilber J. P., “Sufficient condition for strong ellipticity for a class of anisotropic

materials”, International Journal of Non-Linear Mechanics, vol. 38, 2003, p. 441-455.

Weiss J. A., Maker B. N., Govindjee S., “Finite Element Implementation of Incompressible,

Transversely Isotropic Hyperelasticity”, Computer Methods in Applied Mechanics and

Engineering, vol. 135, 1996, p. 107-128.

Downloads

Published

2007-10-25

How to Cite

Dammak, F. ., Regaieg, A. ., Kallel, I. K. ., & Dhieb, A. . (2007). Modélisation de la loi de comportement hyperélastique transversalement isotrope des élastomères. European Journal of Computational Mechanics, 16(1), 103–126. https://doi.org/10.13052/REMN 16/2007//

Issue

Section

Original Article