A formulation of the non linear discrete Kirchhoff quadrilateral shell element with finite rotations and enhanced strains
Keywords:
nonlinear shell element, finite rotation, enhanced assumed strainAbstract
This paper presents a new formulation of the non-linear discrete Kirchhoff quadrilateral shell element applicable for the analysis of geometrically nonlinear structures undergoing finite rotations. The shell director is directly interpolated and the exact linearization of the discreet form of the equilibrium equations is derived in closed form. The consistent tangent stiffness matrix is symmetric and is given explicitly in this paper. Two or three rotational variables are used at each node. To improve the in-plane deformation enhanced incompatible modes are introduced. The formulation is then illustrated by a comprehensive set of numerical experiments selected from the literature.
Downloads
References
Andelfinger U., Ramm E., “EAS-Element for two dimensional, three-dimensional, plate and
shell structures and their equivalence to HR-elements”, Int. J. Numer. Meth. Eng., 36,
, pp. 1311-1337.
Basar Y., Ding Y., Schltz R., “Refined shear-deformation models for composite laminates
with finite rotations”, Int. J. Solids Struct., 30, 1993, pp. 2611-2638.
Batoz J. L., Bathe K. J., Ho L. W., “A study of three-node triangular plate bending elements”,
Int. J. Numer. Meth. Eng., 15, 1980, pp. 1771-1812.
Batoz J. L., Ben Taher M., “Evaluation of a new quadrilateral thin plate bending element”,
Int. J. Numer. Meth. Eng., 18, 1982, pp. 1655- 1677.
Batoz J. L., Dhatt G., Modélisation des structures par éléments finis, vol. 1, 2, 3, Hermès,
Paris, 1990.
Bédouani M. C., Tallec P. L., Mouro J., “Approximations par elements finis d’un modèle de
coques minces géometriquement exact”, Revue européenne des élémens finis, 4, 1995,
pp. 632-661.
Betsch P., Gruttmann F., Stein E., “A 4-node finite shell element for the implementation of
general hyperelastic 3D-elasticity at finite strains”, Computer Methods in Applied
Mechanics and Engineering, 130, 1996, pp. 57-79.
Brank B., Peric D., Damijaic F. B., “On large deformation of thin elasto-plastic shells:
implementation of finite rotation model for quadrilateral shell element”, Int. J. Numer.
Meth. Eng., 40, 1997, pp. 689-726.
Briassoulis D., “Non-linear behaviour of the RFNS element-large displacements and
rotations”, Computer Methods in Applied Mechanics and Engineering, 192, 2003,
pp. 2909-2924.
Buechter N., Ramm E., Large rotation in Structural Mechanics, Centre international des
sciences mécaniques (CISM), Udine, Italy, June 24-28, 1991.
Buechter N., Ramm E., “Shell theory versus dgeneration – A Comparison in large rotation
finite element analysis”, Int. J. Numer. Meth. Eng., 34, 1992, pp. 39-59.
Buechter N., Ramm E., Roehl D., “Three dimensional extension of non-linear shell
formulation based on the enhanced assumed strain concept”, Int. J. Numer. Meth. Eng.,
, 1994, pp. 2551-2568.
Dhatt G., “Numerical analysis of thin shells by curved triangular elements based on discrete
Kirchhoff hypothesis”, proc ASCE Symp. On applications of FEM in civil engineering,
Vanderbilt Univ, Nashvill, Tenn, 1969, pp. 255-278.
Dhatt G., Touzot G., Une présentation de la méthode des éléments finis, Maloine, S. A.
Editeur Paris et Les Presses de l'Université Laval Québec, 1981.
Dhatt G., Marcotte L., Matte Y., “A new triangular discrete Kirchhoff plate/shell element”,
Int. J. Numer. Meth. Eng., 23, 1986, pp. 453-470.
Fafard M., Dhatt G., Batoz J.-L., “A new discrete Kirchhoff plate/shell element with updated
procedures”, Comp. Struct., 31, 1989, pp. 591-606.
Hughes T. J. R, The finite element method: linear static and dynamic finite element analysis,
Prentic Hall, 1987.
Ibrahimbegovic A., “Assumed shear strain in finite rotation shell analysis”, Eng. Comput., 12,
, pp. 425-438.
Ibrahimbegovic A., “Stress resultant geometrically exact shell theory for finite rotations and
its finite element implementation”, ASME, Appl. Mech Reviews, 50 (4), 1997,
pp. 199-226.
Ibrahimbegovic A., “Quadrilateral finite elements for analysis of thick and thin plates”,
Comp. Methods Appl. Mech. Eng., 110, 1993, pp. 195-209.
Jaamei S., Frey F., Jetteur P., “Nonlinear thin finite element with six degrees of freedom per
node”, Comp. Methods Appl. Mech. Eng., 75, 1989, pp. 251-266.
Jeyachandrabose C., Kirkhope J., Mickisho L., “An improved discrete Kirchhoff quadrilateral
thin-plate bending element”, Int. J. Numer. Meth. Eng., 24, 1987, pp. 635-654.
Keulen F. V., Bout A., Ernest L. J., “Nonlinear thin shell using curved triangular element”,
Comp. Methods Appl. Mech. Eng., 103, 1993a, pp. 315-343.
Keulen F. V., “A geometrically nonliear curved shell element with constant resultants”,
Comp. Methods Appl. Mech. Eng., 106, 1993b, pp. 315-352.
Korelc J., Weiggers P., “Improved enhanced strain four node element with Taylor expansion
of the shape function”, Int. J. Numer. Meth. Eng., 40, 1997, pp. 407-421.
Krätzig W. B., Zhang J. W., “A simple four-node quadrilateral finite element for plates”,
Journal of Computational and Applied Mathematics, 50, 1994, pp. 361-373.
Kui L. X., Liu G. Q., Zienkiewicz O. C., “A generalized displacement method for the finite
element analysis of thin shells”, Int. J. Numer. Meth. Eng., 21, 1985, pp. 2145-2155.
Morley L. S. D., “Geometrically non-linear constant moment triangle which passes the Von
Karman path test”, Int. J. Numer. Meth. Eng., 31, 1991, pp. 241-263.
Parisch H., “An investigation of a finite rotation four node assumed strain shell element”, Int.
J. Numer. Meth. Eng., 31, 1991, pp. 127-150.
Parisch H., “A continum based shell theory for non linear applications”, Int. J. Numer. Meth.
Eng., 38, 1995, pp. 1855-1883.
Peng X., Crisfield M. A., “A consistent co-rotational formulation for shells using the constant
stress/constant moment triangle”, Int. J. Numer. Meth. Eng., 35, 1992, pp. 1829-1847.
Razaqpur A. G., Nofal M., Vasilescu A., “An improved quadrilateral finite element for
analysis of thin plates”, Finite Elements in Analysis and Design, 40, 2003, pp. 1-23.
Saleeb A. F., Chang T. Y., Graf W., Yingyeunyong S., “A hybrid/mixed model for nonlinear
shell analysis and its application to large-rotation problems”, Int. J. Numer. Meth. Eng.,
, 1990, pp. 407-446.
Sansour C., Bufler H., “An exact finite rotation shell theory, its mixed variational formulation
and its finite element implementation”, Int. J. Numer. Meth. Eng., 34, 1992, pp. 73-115.
Simo J.-C., Rifai M. S., Fox D. D., “On a stress resultant geometrically exact shell model.
Part III : Computational aspects of the nonlinear theory”, Comp. Methods Appl. Mech.
Eng., 79, 1990a, pp. 21-70.
Simo J.-C., Rifai M. S., “A class of mixed assumed strain methods and the methods of
incompatible modes”, Int. J. Numer. Meth. Eng., 29, 1990b, pp. 1595-1638.
Simo J.-C., Armero F., “Geometrically non-linear enhanced strain mixed methods and the
method of incompatible modes”, Int. J. Numer. Meth. Eng., 33, 1992, pp. 1413-1449.
Simo J.-C., “On a stress resultants geometrically exact shell model. Part:VII: Shell
intersection with 5/6 DOF finite element formulations”, Comp. Methods Appl. Mech.
Eng., 108, 1993a, pp. 319-339.
Simo J.C., Armero F., Taylor R. L., “Improved version of assumed enhanced strain tri-linear
elements for 3D finite deformation problems”, Comp. Methods Appl. Mech. Eng., 110,
b, pp. 359-386.
Soh K., Long Z., Song C., “Development of a new quadrilateral thin plate element using area
coordinates”, Comp. Methods Appl. Mech. Eng., 190, 2000, pp. 979-987.
Talaslidis D., Sous I., “A discrete Kirchoff triangular element for the analysis of thin
stiffened shells”, Comp. Struct., 43, 1992, pp. 663-674.
Wriggers P., Gruttmann F., “Thin shells with finite rotations formulated in Biot stresses:
Theory and finite element formulation”, Int. J. Numer. Meth. Eng., 36, 1993,
pp. 2049-2071.
Zienkiewicz O. C., Taylor R. L., Papadopoulos P., E. Onate, “Plate bending element with
descrete constraints: New triangular elements”, Comp. Struct., 35, 1990, pp. 505-522.
Zienkiewicz O. C., Taylor R. L., The finite element method, 4th Edition., vol. 1, 2, McGraw-
Hill, London, 1991.