Etude de la stabilité d’une formulation incompressible traitée par X-FEM
Keywords:
mixed formulation, X-FEM, partition of unity, inf-sup condition, incompressibility, holesAbstract
The treatment of (near-)incompressibility is a major concern for the simulation of rubber-like parts, or forming processes. The use of mixed finite element methods is known to prevent the locking of the F.E. approximation in the incompressible limit. However, the stability of these formulations is conditionned by the fullfilment of the inf-sup condition. Recently, finite elements method has evolved with the introduction of the partition of unity. The X-FEM uses it to remove the need to mesh (and remesh) physical surfaces. In this paper, a strategy is proposed for the treatment of holes within X-FEM in the incompressible setting. Numerical examples show that F.E. convergence rate is preserved and that the inf-sup condition is passed.
Downloads
References
Areias P. M. A., Belytschko T., « Non-linear analysis of shells with arbitrary evolving cracks
using XFEM », International Journal for Numerical Methods in Engineering, vol. 62,
p. 384-415, 2005.
Arnold D., Brezzi F., Fortin M., « Stable finite element for stokes equations », Calcolo, vol. 21,
p. 337-344, 1984.
Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer, New York, 1991.
Chapelle D., Bathe K., « The inf-sup test », Computers & structures, vol. 47, p. 537-545, 1993.
Chessa J., Belytschko T., « An extended finite element method for two-phase fluids », Journal
of Applied Mechanics (ASME), vol. 70, p. 10-17, 2003.
Daux C.,Moës N., Dolbow J., Sukumar N., Belytschko T., « Arbitrary branched and intersecting
cracks with the eXtended Finite Element Method », International Journal for Numerical
Methods in Engineering, vol. 48, p. 1741-1760, 2000.
Dolbow J., Belytschko T., « Volumetric locking in the element free Galerkin method », Int. J.
Numer. Methods Eng., vol. 46, p. 925942, 1999.
Dolbow J., Devan A., « Enrichment of Enhanced Assumed Strain Approximations for representing
Strong Discontinuities : Addressing Volumetric Incompressibility and the Discontinuous
Patch Test », International journal for numerical methods in engineering, vol. 59,
p. 47-67, 2004.
Dolbow J., Moës N., Belytschko T., « Modeling fracture in Mindlin-Reissner plates with the
eXtended finite element method », Int. J. Solids Structures, vol. 37, p. 7161-7183, 2000.
Gravouil A., Moës N., Belytschko T., « Non-planar 3D crack growth by the extended finite
element and level sets. Part II : level set update », International Journal for Numerical
Methods in Engineering, vol. 53, p. 2569-2586, 2002.
Huerta A., Fernández-Méndez S., « Enrichment and Coupling of the Finite Element and Meshless
Methods », International Journal for Numerical Methods in Engineering, vol. 48,
p. 1615-1636, 2000.
Huerta A., Fernández-Méndez S., « Locking in the incompressible limit for the element free
galerkin method », international journal for numerical methods in engineering, vol. 51,
p. 1361-1383, 2001.
Huerta A., Vidal Y., Villon P., « Pseudo-divergence-free element free Galerkin method for incompressible
fluid flow », Computer Methods in Applied Mechanics and Engineering, vol.
, p. 1119-1136, 2004.
Hughes T., « Generalization of selective reduced integration procedures to anisotropic and
nonlinear media. », International Journal for Numerical Methods in Engineering, vol. 15,
p. 1413-1418, 1980.
Hughes T., Taylor R., Levy J., High Reynolds number, steady, incompressible flows by a finite
element method, John Wiley & Sons, 1978.
Legrain G., Moës N., Huerta A., « Stability of incompressible formulations enriched with XFEM
», Computer Meth. Appl. Mech. Engrg., 2005a. Submitted.
Legrain G., Moës N., Verron E., « Stress analysis around crack tips in finite strain problems
using the eXtended Finite Element Method », International Journal for Numerical Methods
in Engineering, vol. 63, p. 290-314, 2005b.
Malkus D. S., « Eigenproblems associated with the discrete LBB condition for incompressible
finite elements », Int. J. Eng. Sci., vol. 19, p. 1299-1310, 1981.
Melenk J., Babuška I., « The partition of unity finite element method : Basic theory and applications
», Comput. Methods Appl. Mech. Engrg., vol. 139, p. 289-314, 1996.
Moës N., Belytschko T., « Extended Finite Element Method for Cohesive Crack Growth »,
Engineering Fracture Mechanics, vol. 69, p. 813-834, 2002a.
Moës N., Cloirec M., Cartraud P., Remacle J.-F., « A computational approach to handle complex
microstructure geometries », Comp. Meth. in Applied Mech. and Engrg., vol. 192, p. 3163-
, 2003.
Moës N., Dolbow J., Belytschko T., « A finite element method for crack growth without remeshing
», International Journal for Numerical Methods in Engineering, vol. 46, p. 131-150,
Moës N., Gravouil A., Belytschko T., « Non-planar 3D crack growth by the extended finite
element and level sets. Part I : Mechanical model », International Journal for Numerical
Methods in Engineering, vol. 53, p. 2549-2568, 2002b.
Naylor D., « Stress in nearly incompressible materials for finite elements with application to
the calculation of excess pore pressure. », international journal for numerical methods in
engineering, vol. 8, p. 443-460, 1974.
Réthoré J., Gravouil A., Combescure A., « An energy-conserving scheme for dynamic crack
growth using the eXtended finite element method », International Journal for Numerical
Methods in Engineering, vol. 63, p. 631-659, 2005.
Simo J., Rifai M., « A class of mixed assumed strain methods and the method of incompatible
modes », International Journal for Numerical Methods in Engineering, vol. 29,
p. 15951638, 1990.
Sukumar N., Chopp D. L., Moës N., Belytschko T., « Modeling Holes and Inclusions by Level
Sets in the Extended Finite Element Method », Comp. Meth. in Applied Mech. and Engrg.,
vol. 190, p. 6183-6200, 2001.
Taylor R., Beresford P., Wilson E., « A nonconforming element for stress analysis », International
Journal for Numerical Methods in Engineering, vol. 10, p. 1211-1219, 1976.
Wagner G., Moës N., LiuW., Belytschko T., « The Extended Finite Element Method for Stokes
Flow Past Rigid Cylinders », International Journal for Numerical Methods in Engineering,
vol. 51, p. 293-313, 2001.