Etude de la stabilité d’une formulation incompressible traitée par X-FEM

Authors

  • Gregory Legrain GeM - Institut de Recherche en Genie Civil et Mécanique École Centrale de Nantes - Université de Nantes - CNRS UMR 6183 1, rue de la Noë, BP 92101 - F-44321 Nantes Cedex 3
  • Nicolas Moës GeM - Institut de Recherche en Genie Civil et Mécanique École Centrale de Nantes - Université de Nantes - CNRS UMR 6183 1, rue de la Noë, BP 92101 - F-44321 Nantes Cedex 3
  • Antonio Huerta LaCàN - Laboratori de Càlcul Numèric - Edifici C2, Campus Nord, Universitat Politècnica de Catalunya - E-08034 Barcelona, Spain

Keywords:

mixed formulation, X-FEM, partition of unity, inf-sup condition, incompressibility, holes

Abstract

The treatment of (near-)incompressibility is a major concern for the simulation of rubber-like parts, or forming processes. The use of mixed finite element methods is known to prevent the locking of the F.E. approximation in the incompressible limit. However, the stability of these formulations is conditionned by the fullfilment of the inf-sup condition. Recently, finite elements method has evolved with the introduction of the partition of unity. The X-FEM uses it to remove the need to mesh (and remesh) physical surfaces. In this paper, a strategy is proposed for the treatment of holes within X-FEM in the incompressible setting. Numerical examples show that F.E. convergence rate is preserved and that the inf-sup condition is passed.

Downloads

Download data is not yet available.

References

Areias P. M. A., Belytschko T., « Non-linear analysis of shells with arbitrary evolving cracks

using XFEM », International Journal for Numerical Methods in Engineering, vol. 62,

p. 384-415, 2005.

Arnold D., Brezzi F., Fortin M., « Stable finite element for stokes equations », Calcolo, vol. 21,

p. 337-344, 1984.

Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer, New York, 1991.

Chapelle D., Bathe K., « The inf-sup test », Computers & structures, vol. 47, p. 537-545, 1993.

Chessa J., Belytschko T., « An extended finite element method for two-phase fluids », Journal

of Applied Mechanics (ASME), vol. 70, p. 10-17, 2003.

Daux C.,Moës N., Dolbow J., Sukumar N., Belytschko T., « Arbitrary branched and intersecting

cracks with the eXtended Finite Element Method », International Journal for Numerical

Methods in Engineering, vol. 48, p. 1741-1760, 2000.

Dolbow J., Belytschko T., « Volumetric locking in the element free Galerkin method », Int. J.

Numer. Methods Eng., vol. 46, p. 925942, 1999.

Dolbow J., Devan A., « Enrichment of Enhanced Assumed Strain Approximations for representing

Strong Discontinuities : Addressing Volumetric Incompressibility and the Discontinuous

Patch Test », International journal for numerical methods in engineering, vol. 59,

p. 47-67, 2004.

Dolbow J., Moës N., Belytschko T., « Modeling fracture in Mindlin-Reissner plates with the

eXtended finite element method », Int. J. Solids Structures, vol. 37, p. 7161-7183, 2000.

Gravouil A., Moës N., Belytschko T., « Non-planar 3D crack growth by the extended finite

element and level sets. Part II : level set update », International Journal for Numerical

Methods in Engineering, vol. 53, p. 2569-2586, 2002.

Huerta A., Fernández-Méndez S., « Enrichment and Coupling of the Finite Element and Meshless

Methods », International Journal for Numerical Methods in Engineering, vol. 48,

p. 1615-1636, 2000.

Huerta A., Fernández-Méndez S., « Locking in the incompressible limit for the element free

galerkin method », international journal for numerical methods in engineering, vol. 51,

p. 1361-1383, 2001.

Huerta A., Vidal Y., Villon P., « Pseudo-divergence-free element free Galerkin method for incompressible

fluid flow », Computer Methods in Applied Mechanics and Engineering, vol.

, p. 1119-1136, 2004.

Hughes T., « Generalization of selective reduced integration procedures to anisotropic and

nonlinear media. », International Journal for Numerical Methods in Engineering, vol. 15,

p. 1413-1418, 1980.

Hughes T., Taylor R., Levy J., High Reynolds number, steady, incompressible flows by a finite

element method, John Wiley & Sons, 1978.

Legrain G., Moës N., Huerta A., « Stability of incompressible formulations enriched with XFEM

», Computer Meth. Appl. Mech. Engrg., 2005a. Submitted.

Legrain G., Moës N., Verron E., « Stress analysis around crack tips in finite strain problems

using the eXtended Finite Element Method », International Journal for Numerical Methods

in Engineering, vol. 63, p. 290-314, 2005b.

Malkus D. S., « Eigenproblems associated with the discrete LBB condition for incompressible

finite elements », Int. J. Eng. Sci., vol. 19, p. 1299-1310, 1981.

Melenk J., Babuška I., « The partition of unity finite element method : Basic theory and applications

», Comput. Methods Appl. Mech. Engrg., vol. 139, p. 289-314, 1996.

Moës N., Belytschko T., « Extended Finite Element Method for Cohesive Crack Growth »,

Engineering Fracture Mechanics, vol. 69, p. 813-834, 2002a.

Moës N., Cloirec M., Cartraud P., Remacle J.-F., « A computational approach to handle complex

microstructure geometries », Comp. Meth. in Applied Mech. and Engrg., vol. 192, p. 3163-

, 2003.

Moës N., Dolbow J., Belytschko T., « A finite element method for crack growth without remeshing

», International Journal for Numerical Methods in Engineering, vol. 46, p. 131-150,

Moës N., Gravouil A., Belytschko T., « Non-planar 3D crack growth by the extended finite

element and level sets. Part I : Mechanical model », International Journal for Numerical

Methods in Engineering, vol. 53, p. 2549-2568, 2002b.

Naylor D., « Stress in nearly incompressible materials for finite elements with application to

the calculation of excess pore pressure. », international journal for numerical methods in

engineering, vol. 8, p. 443-460, 1974.

Réthoré J., Gravouil A., Combescure A., « An energy-conserving scheme for dynamic crack

growth using the eXtended finite element method », International Journal for Numerical

Methods in Engineering, vol. 63, p. 631-659, 2005.

Simo J., Rifai M., « A class of mixed assumed strain methods and the method of incompatible

modes », International Journal for Numerical Methods in Engineering, vol. 29,

p. 15951638, 1990.

Sukumar N., Chopp D. L., Moës N., Belytschko T., « Modeling Holes and Inclusions by Level

Sets in the Extended Finite Element Method », Comp. Meth. in Applied Mech. and Engrg.,

vol. 190, p. 6183-6200, 2001.

Taylor R., Beresford P., Wilson E., « A nonconforming element for stress analysis », International

Journal for Numerical Methods in Engineering, vol. 10, p. 1211-1219, 1976.

Wagner G., Moës N., LiuW., Belytschko T., « The Extended Finite Element Method for Stokes

Flow Past Rigid Cylinders », International Journal for Numerical Methods in Engineering,

vol. 51, p. 293-313, 2001.

Downloads

Published

2006-07-03

How to Cite

Legrain, G., Moës, N., & Huerta, A. (2006). Etude de la stabilité d’une formulation incompressible traitée par X-FEM. European Journal of Computational Mechanics, 15(1-3), 257–268. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2147

Issue

Section

Original Article

Most read articles by the same author(s)