A stable 3D contact formulation using X-FEM

Authors

  • Samuel Geniaut Laboratoire de Mécanique des Structures Industrielles Durables CNRS-EDF, UMR 2832 1, avenue du Général de Gaulle, F-92141 Clamart and Institut de recherche en Génie civil et Mécanique Ecole Centrale de Nantes/Université de Nantes/UMR CNRS 6183 1, rue de la Noé, F-44321 Nantes cedex 3
  • Patrick Massin Laboratoire de Mécanique des Structures Industrielles Durables CNRS-EDF, UMR 2832 1, avenue du Général de Gaulle, F-92141 Clamart
  • Nicolas Moës Institut de recherche en Génie civil et Mécanique Ecole Centrale de Nantes/Université de Nantes/UMR CNRS 6183 1, rue de la Noé, F-44321 Nantes cedex 3

DOI:

https://doi.org/10.13052/REMN%20162007

Keywords:

X-FEM, adhesive contact, 3D

Abstract

This paper presents a 3D non-locking contact approach, within the eXtended Finite Element Method (X-FEM) framework. X-FEM allows one to introduce interface independently of the mesh. The contact problem on the interface leads to an Augmented Lagrangian formulation derived from the discretization of its continuous formulation. It is shown that a simple choice of the Lagrange multiplier space is not suitable and leads to contact pressure oscillations. An algorithm for the restriction of the Lagrange multiplier approximation space is proposed to stabilize the formulation. The stability of the mixed displacement-contact pressure formulation is discussed in terms of convergence of the energy error. Numerical examples performed with the Finite Element software Code_Aster illustrate this approach while solving three-dimensional problems with contact.

Downloads

Download data is not yet available.

References

Alart P., Cunier A., “A mixed formulation for frictional contact problems prone to Newton

like solution methods”, Computer Methods in Applied Mechanics and Engineering, 92,

, p. 353-375.

Bathe K.J., “The inf-sup condition and its evaluation for mixed element methods”, Computers

and Structures, 79, 2001, p. 243-252.

Béchet E., Minnebo H., Moës N., Burgardt B., “Improved implementation and robustness

study of the X-FEM for stress analysis around cracks”, International Journal for

Numerical Methods in Engineering, vol. 64, n° 8, 2005, p. 1033-1056.

Belytschko T., Moës N., Usui S., Parimi C., “Arbitrary discontinuities in finite elements”,

International Journal for Numerical Methods in Engineering, 50, 2001, p. 993-1013.

Ben Dhia H., “Modelling and numerical approach of contact and dry friction in simulation of

sheet metal forming”, Proceedings of Second World Congress on Comput. Mech.,

Stuttgart, August 27-71, 1990, p. 779-782.

Ben Dhia H., Vautier I., Une formulation pour traiter le contact frottement en 3D dans le

Code_Aster, Rapport de recherche HI-75/99/007/A, juin 1999, EDF R&D.

Ben Dhia H., Vautier I., Zarroug M., « Problèmes de contact frottant en grandes

transformations : du continu au discret », Revue européenne des éléments finis, vol. 9,

n° 1-2-3, 2000, p. 243-261.

Ben Dhia H., Zarroug M., “Hybrid frictional contact particles-in elements”, Revue

européenne des éléments finis, vol. 11, n° 2-4, 2002, p. 417-430.

Curnier A., He Q.C., Klarbring A., “Continuum mechanics modelling of large deformation

contact with friction”, Contact mechanics, Plenum Press, 1995.

Dolbow J., Moës N., Belytschko T., “An extended finite element method for modelling crack

growth with frictional contact”, Computer Methods in Applied Mechanics and

Engineering, vol. 190, 2001, p. 6825-6846.

Dumont G., Algorithme des contraintes actives et contact unilatéral sans frottement, Journal

européen des éléments finis, vol. 4, n° 1, 1995, p. 55-73.

Elguedj T., Gravouil A., Comberscure A., “Appropriate extended functions for X-FEM

simulation of plastic fracture mechanics”, Computer Methods in Applied Mechanics and

Engineering, 195, 2006, p. 501-515.

Fries T.-P., Matthies H.-G., “Classification and overview of Meshfree methods”,

informatikbericht Nr., 2003-3, July, 2004.

Gravouil A., Moës N., Belytschko T., “Non-planar 3D crack growth by the extended finite

element and level sets - Part II: Level set update”, International Journal for Numerical

Methods in Engineering, 53, 2002, p. 2569-2586.

Ji H., Dolbow J.E., “On strategies for enforcing interfacial constraints and evaluating jumps

conditions with the extended finite element method”, International Journal for Numerical

Methods in Engineering, 61, 2004, p. 2508-2535.

Laursen T.A., Simo J.C., “A continuum element-based formulation for the implicit solution of

multi-body, large deformation frictional contact problem”, International Journal for

Numerical Methods in Engineering, 36, 1993, p. 3451-3485.

Legrain G., Moës N., Verron E., “Stress analysis around crack tips in finite strain problems

using the eXtended Finite Element Method”, International Journal for Numerical

Methods in Engineering, vol. 63, n° 2, 2005, p. 290-314.

Li S.C., Cheng Y.M., “Enriched meshless manifold method for two-dimensional crack

modelling“, Theoretical and Applied Fracture Mechanics, 44, 2005, p. 234-248.

Melenk J.M., Babuška I., “The partition of unity finite element method: Basic theory and

applications”, Computer Methods in Applied Mechanics and Engineering, 139, 1999,

p. 289-314.

Moës N., Dolbow J., Belytschko T., “A finite element method for crack growth without

remeshing”, International Journal for Numerical Methods in Engineering, 46, 1999,

p. 131-150.

Moës N., Béchet E., Tourbier M., “Imposing essential boundary conditions in the X-FEM”,

International Journal for Numerical Methods in Engineering, 2005, accepted.

Ribeaucourt R., Baietto-Dubourg M.C., Gravouil A., « Modèle numérique de propagation de

fissures en fatigue de contact, Application à la fatigue de roulement », 7e Colloque

National en Calcul des Structures, Giens (France), 17-20/05/2005, vol. 2, p. 641-646.

Sukumar N., Chopp D.L., Moës N., Belytschko T., “Modelling holes and inclusions by level

sets in the extended finite-element method”, Computer Methods in Applied Mechanics

and Engineering, vol. 190, 2001, p. 6183-6200.

Zarroug M., Eléments mixtes de contact frottant en grandes transformations et applications,

Thèse de doctorat, École Centrale de Paris, 2002.

Downloads

Published

2007-10-26

How to Cite

Geniaut, S. ., Massin, P. ., & Moës, N. (2007). A stable 3D contact formulation using X-FEM. European Journal of Computational Mechanics, 16(2), 259–275. https://doi.org/10.13052/REMN 162007

Issue

Section

Original Article