A stable 3D contact formulation using X-FEM
DOI:
https://doi.org/10.13052/REMN%20162007Keywords:
X-FEM, adhesive contact, 3DAbstract
This paper presents a 3D non-locking contact approach, within the eXtended Finite Element Method (X-FEM) framework. X-FEM allows one to introduce interface independently of the mesh. The contact problem on the interface leads to an Augmented Lagrangian formulation derived from the discretization of its continuous formulation. It is shown that a simple choice of the Lagrange multiplier space is not suitable and leads to contact pressure oscillations. An algorithm for the restriction of the Lagrange multiplier approximation space is proposed to stabilize the formulation. The stability of the mixed displacement-contact pressure formulation is discussed in terms of convergence of the energy error. Numerical examples performed with the Finite Element software Code_Aster illustrate this approach while solving three-dimensional problems with contact.
Downloads
References
Alart P., Cunier A., “A mixed formulation for frictional contact problems prone to Newton
like solution methods”, Computer Methods in Applied Mechanics and Engineering, 92,
, p. 353-375.
Bathe K.J., “The inf-sup condition and its evaluation for mixed element methods”, Computers
and Structures, 79, 2001, p. 243-252.
Béchet E., Minnebo H., Moës N., Burgardt B., “Improved implementation and robustness
study of the X-FEM for stress analysis around cracks”, International Journal for
Numerical Methods in Engineering, vol. 64, n° 8, 2005, p. 1033-1056.
Belytschko T., Moës N., Usui S., Parimi C., “Arbitrary discontinuities in finite elements”,
International Journal for Numerical Methods in Engineering, 50, 2001, p. 993-1013.
Ben Dhia H., “Modelling and numerical approach of contact and dry friction in simulation of
sheet metal forming”, Proceedings of Second World Congress on Comput. Mech.,
Stuttgart, August 27-71, 1990, p. 779-782.
Ben Dhia H., Vautier I., Une formulation pour traiter le contact frottement en 3D dans le
Code_Aster, Rapport de recherche HI-75/99/007/A, juin 1999, EDF R&D.
Ben Dhia H., Vautier I., Zarroug M., « Problèmes de contact frottant en grandes
transformations : du continu au discret », Revue européenne des éléments finis, vol. 9,
n° 1-2-3, 2000, p. 243-261.
Ben Dhia H., Zarroug M., “Hybrid frictional contact particles-in elements”, Revue
européenne des éléments finis, vol. 11, n° 2-4, 2002, p. 417-430.
Curnier A., He Q.C., Klarbring A., “Continuum mechanics modelling of large deformation
contact with friction”, Contact mechanics, Plenum Press, 1995.
Dolbow J., Moës N., Belytschko T., “An extended finite element method for modelling crack
growth with frictional contact”, Computer Methods in Applied Mechanics and
Engineering, vol. 190, 2001, p. 6825-6846.
Dumont G., Algorithme des contraintes actives et contact unilatéral sans frottement, Journal
européen des éléments finis, vol. 4, n° 1, 1995, p. 55-73.
Elguedj T., Gravouil A., Comberscure A., “Appropriate extended functions for X-FEM
simulation of plastic fracture mechanics”, Computer Methods in Applied Mechanics and
Engineering, 195, 2006, p. 501-515.
Fries T.-P., Matthies H.-G., “Classification and overview of Meshfree methods”,
informatikbericht Nr., 2003-3, July, 2004.
Gravouil A., Moës N., Belytschko T., “Non-planar 3D crack growth by the extended finite
element and level sets - Part II: Level set update”, International Journal for Numerical
Methods in Engineering, 53, 2002, p. 2569-2586.
Ji H., Dolbow J.E., “On strategies for enforcing interfacial constraints and evaluating jumps
conditions with the extended finite element method”, International Journal for Numerical
Methods in Engineering, 61, 2004, p. 2508-2535.
Laursen T.A., Simo J.C., “A continuum element-based formulation for the implicit solution of
multi-body, large deformation frictional contact problem”, International Journal for
Numerical Methods in Engineering, 36, 1993, p. 3451-3485.
Legrain G., Moës N., Verron E., “Stress analysis around crack tips in finite strain problems
using the eXtended Finite Element Method”, International Journal for Numerical
Methods in Engineering, vol. 63, n° 2, 2005, p. 290-314.
Li S.C., Cheng Y.M., “Enriched meshless manifold method for two-dimensional crack
modelling“, Theoretical and Applied Fracture Mechanics, 44, 2005, p. 234-248.
Melenk J.M., Babuška I., “The partition of unity finite element method: Basic theory and
applications”, Computer Methods in Applied Mechanics and Engineering, 139, 1999,
p. 289-314.
Moës N., Dolbow J., Belytschko T., “A finite element method for crack growth without
remeshing”, International Journal for Numerical Methods in Engineering, 46, 1999,
p. 131-150.
Moës N., Béchet E., Tourbier M., “Imposing essential boundary conditions in the X-FEM”,
International Journal for Numerical Methods in Engineering, 2005, accepted.
Ribeaucourt R., Baietto-Dubourg M.C., Gravouil A., « Modèle numérique de propagation de
fissures en fatigue de contact, Application à la fatigue de roulement », 7e Colloque
National en Calcul des Structures, Giens (France), 17-20/05/2005, vol. 2, p. 641-646.
Sukumar N., Chopp D.L., Moës N., Belytschko T., “Modelling holes and inclusions by level
sets in the extended finite-element method”, Computer Methods in Applied Mechanics
and Engineering, vol. 190, 2001, p. 6183-6200.
Zarroug M., Eléments mixtes de contact frottant en grandes transformations et applications,
Thèse de doctorat, École Centrale de Paris, 2002.