Nonlinear analysis of reinforced concrete structures using a new constitutive model
Keywords:
compressive softening behavior of concrete, non-linear analysis, reinforced concrete structures, modeling, cracked concrete, tension stiffening, cut off, beamsAbstract
An analytical model, which can simulate the biaxial description of the nonlinear behavior of reinforced concrete structures, is introduced. The behavior of concrete is assumed orthotropic inside the ultimate failure surface and a compressive softening law of concrete is presented. The behavior of cracked concrete is simulated using the smeared crack model, which the tension stiffening effect based on a cracking criterion derived from the fracture mechanics principles is considered. A computer program is developed for analyzing the over and under-reinforced concrete beams. Several parameters such as the non-linearity proprieties, the cut off and tension stiffening models and shear retention factor are studied. The correlation between analytical and experimental results shows the validity of the proposed models and the significance of various effects. The global responses are evaluated to verify simultaneously the reliability of the proposed model and the performance of the numerical program.
Downloads
References
Asce, Task Committee on finite element analysis of reinforced concrete structures, “Finite
element analysis of reinforced concrete”, ASCE, New York, 1982.
Belarbi A, Hsu T.T.C., “Constitutive laws of concrete in tension and reinforcing bars
stiffened by concrete”, Struct. J. Am. Concr. Inst., Vol. 91, No. 4, 1994, pp. 465-474.
BIcanic N., Pearce C.J., Owen D.R.J., “Failure predictions of concrete like materials using
softening Hoffman plasticity model”, EURO-C 94, Computational modeling of concrete
structures, ed. H. Mang, N. Bicanic et R. de Borst, Vol. 1, 1994, pp. 185-198.
La Borderie Ch., Stratégies et modèles de calculs pour les structures en béton, Thèse de
l’Habilitation à Diriger les Recherches, Université de PAU, France, 2003.
Gilbert R.H., Warner R.F., “Tension stiffening in reinforced concrete slabs”, J. Eng. M. Div .
ASCE, Vol. 104, 1978, pp. 1885-1900.
Hibbit, Karlsson, Sorensen, Abaqus theory manual and user manual, Version 5.5, Providence,
Rhode Island, 1997.
Hognestad E., A study of combined bending and axial load in reinforced concrete members,
University of Illinois Engineering Experiment Station, Bulletin Series No. 399 (1), 1955.
Hu H.T., Liang J.I., “Ultimate analysis of BWR mark III reinforced concrete containment
subject to internal pressure”, Nuclear Engineering and Design, 195, 2000, pp. 1-11.
Khalfallah S., Modélisation du comportement non linéaire des structures en béton armé sous
chargement monotone, Thèse de doctorat d’état, Université de Constantine, Algérie, 2003,
p.
Kim D.Y., Material nonlinear analysis of RC shear walls, Msc Thesis KAIST, Korea, 1999, 63 p.
Kupfer H.B., Hilsdorf H.K., Rusch H., “Behavior of concrete under compressive loading”, J.
Eng. M. Div. ASCE, vol. 95, 1969, p. 2543-2563.
Kupta A.K., Maestrini S.R., “Tension stiffening model for reinforced concrete bar”, J. of
Structural Engineering, Vol. 116, No. 3, 1990, pp. 769-790.
Kwak H.G., Kim D.Y., “Non linear analysis of RC shear walls considering tension stiffening
effect”, Computers and Structures, Vol. 79, 2001, pp. 499-517.
Kwak H.G., Kim D.Y., “Cracking analysis of RC members using polynomial strain
distribution function”, Engineering Structures, Vol. 24, 2002, pp. 455-468.
Leibengood L.D., Darwin D., Dodds R.H., “Parameters affecting finite element analysis of
concrete structures”, J. of Structural Engineering., Vol. 112, 1986, pp. 326-341.
Lin C.S., Scordelis A.C., “Nonlinear analysis of RC shells of general form”, J. Struct. Div.
ASCE, Vol. 101, 1975, pp. 523-538.
Liu T.C.Y., Nilson A.H., “Biaxial stress strain relations for concrete”, J. Struct. Div. ASCE,
Vol. 98, No. 5, 1972, pp. 1025-1034.
Mazars J., Application de la mécanique d’endommagement au comportement non linéaire et à
la rupture du béton de structures, Thèse de Doctorat d’état de l’université Paris 6, 1984.
Mazars J., Pijauder G., Pulikowski J., “La modélisation du comportement des matériaux pour
décrire l’endommagement des structures”, Assise du génie civil, génie parasismique,
ed. J.P. Henry, 1992, pp. 189-203.
Ngo D., Scordelis A.C., “Finite element analysis of reinforced concrete”, ACI journal,
Vol. 64, No. 14, 1967, pp. 152-163.
Pera J., Poutres hyperstatiques en béton armé, analyse théorique et expérimentale, Thèse de
docteur-ingénieur, INSA Lyon, France, 1973, 186 p.
Pang X.P., Hsu T.T.C., “Behavior of reinforced concrete membrane elements in shear”,
Struct. J. Am. Concr. Inst., Vol. 92, No. 6, 1995, pp. 665-679.
Rots J.G., Computational modeling of concrete fracture, Ph. D. dissertation, Delft University
of Technology, Department of Civil Engineering, 1988.
Walter H., Modélisation 3D par éléments finis du contact avec frottement et de
l’endommagement du béton : application à l’étude de fixation ancrées dans une structure
en béton, Thèse de Doctorat, INSA Lyon, France, 1999, 174 p.
Wang T., Hsu T.T.C., “Nonlinear finite element analysis of concrete structures using new
constitutive models”, Computers & Structures, Vol. 79, 2001, pp. 2781-2791.
Welch G.B., Haisman B., Fracture toughness measurements of concrete, Report No. R42,
University of New South Wales, Sydney, Australia, 1969.
Zhu R.H., Hsu T.T.C., Lee J.Y., “Rational shear modulus of smeared crack analysis of
reinforced concrete”, Struct. J. Am. Concr. Inst., Vol. 98, No. 4, 2001, pp. 443-450.
Zienkiewicz O.C., Taylor R.L., The finite element method, New York, McGraw-Hill, 1991.