Vecteur de rotation incr´emental pour les coques non lin´eaires en grandes rotations
Keywords:
Nonlinear shell in large rotations, Incremental rotation vecteur, Symetric stiffness matrixAbstract
We propose in this work an incremental rotation vector for three-dimensionnal nonlinear shells with large rotations, we use the geometrically nonlinear shell theory. The major advantage in this description, without problem in finite rotations and with update procedure of incremental rotation in accord to principals numericals programs, is to provide a symetric tangent stiffness matrix leading to quadratic convergence of the incremental solution. Two approaches spatial or material, are illustrated. The finite element matrix with incompatible modes will be done in addition of operator split resolution method. The examples includ not only analyses of simple shell undergoing large rotation, but also cases of post-buckling displacements. We evaluate the results in comparison with total rotation vection method and 5 degree-of-freedom incremental vector.
Downloads
References
[Al 98] M. Al Mikdad. Statique et dynamique des poutres g´eom´etriquement exactes et r´esolution
des probl`emes d’instabilit´e non lin´eaire. Th`ese de doctorat, UTC, France, avril 1998.
[Arg82] J.H. Argyris. An excursion into large rotations. Comput. Methods Appl. Mech. Eng.,
:85–155, 1982.
[BD92a] Y. Basar and Y. Ding. Finite-rotation shell elements for the analysis of finite-rotation
shell problems. Int. J. Numer. Methods Eng., 34:165–169, 1992.
[BD92b] J.L. Batoz and G. Dhatt. Mod´elisation des structures par ´el´ements finis. Coques, volume
Hermes, Paris, 1992.
[BR92] N. Buechter and E. Ramm. Shell theory versus degeneration - a comparison in large
rotation finite element analysis. Int. J. Numer Methods Eng., 34:39–59, 1992.
[DS75] D.A. DaDeppo and R. Schmidt. Instability of clamped-hinged circular arches subjected
to a point load. J. Appl. Mech., 97:894–896, 1975.
[DT81] G. Dhatt and G. Touzot. Une pr´esentation de la m´ethode des ´el´ements finis. Collection
Universit´e de Compi`egne, France, 1981.
[Gol80] H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, MA, 1980.
[IBC01] A. Ibrahimbegovi´c, B. Brank, and P. Courtois. Stress resultant geometrically exact
form of classical shell model and vector-like parametrization of constrained finite rotation.
Int. J. Numer. Methods Eng., 52/11:1235–1252, 2001.
[Ibr94] A. Ibrahimbegovi´c. Stress resultant geometrically nonlinear shell theory with drilling
rotations-part i: A consistent formulation. Comput. Methods Appl. Mech. Eng., 118:265–
, 1994.
[Ibr95] A. Ibrahimbegovi´c. On assumed shear strain in finite rotation shell analysis. Eng. Comput.,
:425–438, 1995.
[Ibr97] A. Ibrahimbegovi´c. Th´eorie g´eom´etriquement exacte des coques en rotations finies et
son implantation ´el´ements finis. Revue europ´eenne des ´el´ements finis, 6:263–335, 1997.
[IF94] A. Ibrahimbegovi´c and F. Frey. Stress resultant geometrically nonlinear shell theory
with drilling rotations-part ii: Computational aspects. Comput. Methods Appl. Mech. Eng.,
:285–308, 1994.
[IFK95] A. Ibrahimbegovi´c, F. Frey, and I. Koˇzar. Computational aspects of vector-like parameterization
of three-dimensional finite rotations. Int. J. Numer. Methods Eng., 38:3653–3673,
[Lan95] S. Lang. Differential and Riemannian Manifolds. Springer-Verlag, Berlin, 1995.
[SF89] J.C Simo and D.D. Fox. On a stress resultants geometrically exact shell model. part i:
Formulation and optimal parameterization. Comp. Methods Appl. Mech. Eng., 72:267–304,
[SFR90] J.C Simo, D.D. Fox, and M.S. Rifai. On a stress resultants geometrically exact shell
model. part iii: The computational aspects of the nonlinear theory. Comp. Methods Appl.
Mech. Eng., 79:21–70, 1990.
[SK92] J.C Simo and J.G. Kenedy. On a stress resultants geometrically exact shell model. part
v: Nonlinear plasticity, formulation and integration algorithms. Comp. Methods Appl. Mech.
Eng., 96:133–171, 1992.
[Spr86] K.W. Spring. Euler parameters and the use of quaternion algebra in the manipulation
of finite rotations: A review. Mechanism Mach. Theory, 21:365–373, 1986.
[WTDG73] E.L.Wilson, R.L. Taylor,W.H. Doherty, and J. Ghaboussi. Incompatibles displacement
models. Num. and Comp. Methods in Struct. Mech., .:43–57, 1973.
[ZT89] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method : Basic Formulation
and Linear Problem. McGraw-Hill, London, 1989.