Vecteur de rotation incr´emental pour les coques non lin´eaires en grandes rotations

Authors

  • Pierre Courtois Ipharra, 36a, ch. du pain de sucre, F-06800 Cagnes-sur-mer courtois.pierre@wanadoo.fr
  • Adnan Ibrahimbegovic L.M.T. Ecole Normale Sup´erieure, Cachan, 61 Avenue du Pr´esident Wilson, F-94235 Cachan Cedex

Keywords:

Nonlinear shell in large rotations, Incremental rotation vecteur, Symetric stiffness matrix

Abstract

We propose in this work an incremental rotation vector for three-dimensionnal nonlinear shells with large rotations, we use the geometrically nonlinear shell theory. The major advantage in this description, without problem in finite rotations and with update procedure of incremental rotation in accord to principals numericals programs, is to provide a symetric tangent stiffness matrix leading to quadratic convergence of the incremental solution. Two approaches spatial or material, are illustrated. The finite element matrix with incompatible modes will be done in addition of operator split resolution method. The examples includ not only analyses of simple shell undergoing large rotation, but also cases of post-buckling displacements. We evaluate the results in comparison with total rotation vection method and 5 degree-of-freedom incremental vector.

Downloads

Download data is not yet available.

References

[Al 98] M. Al Mikdad. Statique et dynamique des poutres g´eom´etriquement exactes et r´esolution

des probl`emes d’instabilit´e non lin´eaire. Th`ese de doctorat, UTC, France, avril 1998.

[Arg82] J.H. Argyris. An excursion into large rotations. Comput. Methods Appl. Mech. Eng.,

:85–155, 1982.

[BD92a] Y. Basar and Y. Ding. Finite-rotation shell elements for the analysis of finite-rotation

shell problems. Int. J. Numer. Methods Eng., 34:165–169, 1992.

[BD92b] J.L. Batoz and G. Dhatt. Mod´elisation des structures par ´el´ements finis. Coques, volume

Hermes, Paris, 1992.

[BR92] N. Buechter and E. Ramm. Shell theory versus degeneration - a comparison in large

rotation finite element analysis. Int. J. Numer Methods Eng., 34:39–59, 1992.

[DS75] D.A. DaDeppo and R. Schmidt. Instability of clamped-hinged circular arches subjected

to a point load. J. Appl. Mech., 97:894–896, 1975.

[DT81] G. Dhatt and G. Touzot. Une pr´esentation de la m´ethode des ´el´ements finis. Collection

Universit´e de Compi`egne, France, 1981.

[Gol80] H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, MA, 1980.

[IBC01] A. Ibrahimbegovi´c, B. Brank, and P. Courtois. Stress resultant geometrically exact

form of classical shell model and vector-like parametrization of constrained finite rotation.

Int. J. Numer. Methods Eng., 52/11:1235–1252, 2001.

[Ibr94] A. Ibrahimbegovi´c. Stress resultant geometrically nonlinear shell theory with drilling

rotations-part i: A consistent formulation. Comput. Methods Appl. Mech. Eng., 118:265–

, 1994.

[Ibr95] A. Ibrahimbegovi´c. On assumed shear strain in finite rotation shell analysis. Eng. Comput.,

:425–438, 1995.

[Ibr97] A. Ibrahimbegovi´c. Th´eorie g´eom´etriquement exacte des coques en rotations finies et

son implantation ´el´ements finis. Revue europ´eenne des ´el´ements finis, 6:263–335, 1997.

[IF94] A. Ibrahimbegovi´c and F. Frey. Stress resultant geometrically nonlinear shell theory

with drilling rotations-part ii: Computational aspects. Comput. Methods Appl. Mech. Eng.,

:285–308, 1994.

[IFK95] A. Ibrahimbegovi´c, F. Frey, and I. Koˇzar. Computational aspects of vector-like parameterization

of three-dimensional finite rotations. Int. J. Numer. Methods Eng., 38:3653–3673,

[Lan95] S. Lang. Differential and Riemannian Manifolds. Springer-Verlag, Berlin, 1995.

[SF89] J.C Simo and D.D. Fox. On a stress resultants geometrically exact shell model. part i:

Formulation and optimal parameterization. Comp. Methods Appl. Mech. Eng., 72:267–304,

[SFR90] J.C Simo, D.D. Fox, and M.S. Rifai. On a stress resultants geometrically exact shell

model. part iii: The computational aspects of the nonlinear theory. Comp. Methods Appl.

Mech. Eng., 79:21–70, 1990.

[SK92] J.C Simo and J.G. Kenedy. On a stress resultants geometrically exact shell model. part

v: Nonlinear plasticity, formulation and integration algorithms. Comp. Methods Appl. Mech.

Eng., 96:133–171, 1992.

[Spr86] K.W. Spring. Euler parameters and the use of quaternion algebra in the manipulation

of finite rotations: A review. Mechanism Mach. Theory, 21:365–373, 1986.

[WTDG73] E.L.Wilson, R.L. Taylor,W.H. Doherty, and J. Ghaboussi. Incompatibles displacement

models. Num. and Comp. Methods in Struct. Mech., .:43–57, 1973.

[ZT89] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method : Basic Formulation

and Linear Problem. McGraw-Hill, London, 1989.

Downloads

Published

2004-06-11

How to Cite

Courtois, P. ., & Ibrahimbegovic, A. . (2004). Vecteur de rotation incr´emental pour les coques non lin´eaires en grandes rotations. European Journal of Computational Mechanics, 13(8), 857 `– 880. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2277

Issue

Section

Original Article