Theorie geometriquement exacte des coques en rotations finies et son implantation elements finis
Keywords:
nonlinear shell formulation, geometrically exact, finite rotations, finite element approximations, buckling problemsAbstract
In this article, we review the significant progress on shell problem theoretical foundation and numerical implementation attained over a period of the last several years. First, a careful consideration of the three-dimensional finite rotations is given including the choice of optimal parameters, their admissible variations and the much revealing relationship between different parameters. A non-conventional derivation of the stress resultant shell theory is presented, which makes use of thevirtual work principle and local Cartesian frames. The presented derivation introduces no simplifying hypotheses regarding the shell balance equations, hence the resulting shell theory is referred to being the geometrically exact. The strain measures energy-conjugate to the chosen stress resultants are identified and the nature of the stress resultants with respect to the three-dimensional stress tensor is explained along with the resulting constitutive restrictions. Comments are made regarding a rather useful extension of the shell theory which accounts for the rotational degree of freedom about the director, the so-called drilling rotation. A linear shell theory is obtained as a very useful byproduct of the present work, by linearizing the present nonlinear shell theory about the reference configuration. It is shown that this non-conventional approach not only clarifies an often confusing derivation of the linear shell theory, but also leads to a novel linear shell theory capable of delivering significantly improved results and essentially exact solutions to the standard linear benchmark problems. Another important aspect of the nonlinear shell problem solution, the finite element approximation of the shell theory, is also discussed. The model problem of assumed shear strain interpolation is used to illustrate that numerical implementation which preserves the salient features of the theoretical formulation often brings an improved final result. For the selected rotation parameterization and the finite element interpolation, the issues of the consistent linearization of the nonlinear shell problem are addressed. In a number of numerical simulations, the latter is proved to play a crucial role not only in ensuring the robust performance of the Newton solution procedure, but also in linear and nonlinear buckling problems of shells. Several directions for future research are pointed out and some contemporary works of special interest are listed.
Downloads
References
[AIZ70]
[AMR83]
[Ant76]
[Ant95]
[AP93]
[Arg82]
[Atl83]
[Bat95]
[BB93]
J.H. Argyris, H. Balmer, J.St. Doltsinis, P.C. Dunne, M. Haase, G.A.
Malejannakis, H.P. Mlejnek, and D.W. Scharp. Finite element methodthe
natural approach. Comput. Methods Appl. Mech. Eng., 17/18:1-106,
S. Ahmad, B.M. Irons, and O.C. Zienkiewicz. Analysis of thick and thin
shell structures by curved finite elements, int. j. numer. Methods Eng.,
:419-451, 1970.
R. Abraham, J.E. Mardsen, and T. Ratiu. Manifolds, Tensor Analysis
and Applications. Springer-Verlag, Berlin, 1983.
S.S. Antman. Ordinary differential equations of nonlinear elasticity.
part i: Foundations of the theories of non-linearly elastic rods and shells.
Arch. Rat. Mech. Anal., 61:307-351, 1976.
S.S. Antman. Nonlinear Problems in Elasticity. Springer, Berlin, 1995.
J.H. Argyris and V.F. Poterasu. Large rotations revisited: Application
of lie algebra. Comput. Methods Appl. Mech. Eng., 103:11-42, 1993.
J.H. Argyris. An excursion into large rotations. Comput. Methods Appl.
Mech. Eng., 32:85-155, 1982.
S.N. Atluri. Alternate stress and conjugate strain measures and mixed
variational formulations involving rigid rotations for computational
analyses of finitely deformed solids with application to plates and shells.
Comput. Struc., 18:93-116, 1983.
K.J. Bathe. Finite Element Procedures. Prentice Hall, Englewood Cliffs,
N.J., 1995.
M.L. Bucalem and K.J. Bathe. Higher order mite general shell elements.
Int. J. Numer. Methods Eng., 36:3729-3754, 1993.
[BBF89]
[BBH80]
[BBR94)
[BD85)
[BD86]
[BD92a)
[BD92b]
[BDS93]
[BK89)
[BL89]
[BL94]
(BN85]
(BR92]
(BRR94]
(BSL +85]
(Bud68]
Coques en grandes rotations 329
F. Brezzi, K.J. Bathe, and M. Fortin. Mixed-interpolated elements for
reissner-mindlin plates. Int. J. Numer. Methods Eng., 28:1787-1801,
J.L. Batoz, K.J. Bathe, and L.W. Ho. A study of three-node triangular
plate bending elements. Int. J. Numer. Methods Eng., 15:1771-1812,
M. Braun, M. Bischoff, and E. Ramm. Nonlinear shell formulations for
complete three-dimensional constitutive laws including composites and
laminates. Camp. Mech., 15:1-18, 1994.
K.J. Bathe and E.N. Dvorkiu. A four-node plate bending element based
on mindlin-reissner plate theory and a mixed interpolation. Int. J. Numer.
Methods Eng., 21:367-383, 1985.
K.J. Bathe and E.N. Dvorkin. A formulation of general shell element -
the use of mixed interpolation of tensorial components. Int. J. Numer.
Methods Eng., 22:697-722, 1986.
Y. B
finite-rotation shell problems. Int. J. Numer. Methods Eng., 34:165-169,
J.L. Batoz and G. Dhatt. Modeling of Structures with Finite Elements.
Vol 3: Shells, (in French). Hermes, Paris, 1992.
Y. B
for composite laminates with finite rotations. Int. J. Solids Struct.,
:2611-2638, 1993.
Y. B
Acta Mech., 76:73-87, 1989.
J.L. Batoz and P. Lardeur. A discrete shear triangle nine dof element
for the analysis of thick to very thin plates. Int. J. Numer. Methods
Eng., 328:533-560, 1989.
T. Belytschko and I. Leviathan. Projection schemes for one-point
quadrature shell elements. Comput. Methods Appl. Mech. Eng.,
:277-286, 1994.
P.G. Bergan and M.K. Nygard. Nonlinear Shell Analysis Using Free
Formulation Finite Elements, in Finite Element Method for Nonlinear
Problems, pages 317-338. eds. P.G. Bergan eta!. Springer-Verlag, 1985.
N. Buechter and E. Ramm. Shell theory versus degeneration - a comparison
in large rotation finite element analysis. Int. J. Numer Methods
Eng., 34:39-59, 1992.
N. Buechter, E. Ramm, and D. Roehl. Three-dimensional extension
of nonlinear shell formulation based on the enhanced assumed strain
concept. Int. J. Numer Methods Eng., 37:2551-2568, 1994.
T. Belytschko, H. Stolarski, W.K. Liu, N .. Carpenter, and J.S. Ong.
Stress projection for membrane and shear locking in shell finite elements.
Comput. Methods Appl. Mech. Eng., 51:221-258, 1985.
B. Budiansky. Notes on nonlinear shell theory. J. Appl. Mech., 35:393-
, 1968.
[BWC92]
[BWS89]
[CC09]
[CD87]
[CG89]
[Cia91]
[CLJ95]
[CMS92]
[CN72]
[CP92]
[Cri91]
[CS60]
[DB84]
[DR90]
[DS75]
[ET58]
[FC73]
T. Belytschko, B.L. Wong, and H.Y. Chiang. Advances in one-point
quadrature shell elements,. Comput. Methods Appl. Mech. Eng., 98:93-
, 1992.
T. Belytschko, B.L. Wong, and H. Stolarski. Assumed strain stabilization
procedure for the 9-node lagrangian shell element. Int. J. Numer.
Methods Eng., 28:385-414, 1989.
E. Cosserat and F. Cosserat. Theorie de corps deformables, en Traite
de physique, pages 953-1173. ed. Chwolson, 1909.
Y. Choquet-Bruhat and C. DeWitt-Morette. Analysis, Manifolds and
Physics. North-Holland, Amsterdam, 1987.
H. Cheng and K.C Gupta. An historical note on finite rotations. ASME
J. Appl. Mech., 56:139-145, 1989.
Ph.G. Ciarlet. Plates and Junctions in Elastic Multi-Structures: An
Asymptotic Analysis. Masson, Paris, 1991.
M. Carrive-Bedouani, P. Le Tallec, and Mauro J. Finite element approximation
of a geometrically exact shell model. European J. Finite
Elem. - special issue, (eds. A. Jbrahimbegovic and M. Geradin}, 4:633-
, 1995.
J. Chroscielewski, J. Makowski, and H. Stumpf. Genuinely resultant
shell finite elements for geometric and material nonlinearity. Int. J.
Numer Methods Eng., 35:63-94, 1992.
M.M. Carroll and P.M. Naghdi. The influence of the reference geometry
on the response of elastic shells. Arch. Rational Mech. Anal., 48:302-
, 1972.
M.A. Crisfield and X. Peng. Stress Resultant Plasticity Criterion, in
Proceedings COMPLAS III, pages 2035-2046. Pineridge Press. (eds.
D.R.J. Owen et al.), 1992.
M.A. Crisfield. Non-Linear Finite Element Analysis of Solids and Structures.
vol I: Essentials. John Wiley, London, 1991.
H.C. Corben and P. Stehle. Classical Mechanics. John Wiley, New
York, 1960.
E.N. Dvorkin and K.J. Bathe. A continuum mechanics based four-node
shell element for general nonlinear analysis. Eng. Computations, 1:77-
, 1984.
K. Dorninger and F. Rammerstorfer. A layered composite shell element
for elastic and thermoelastic stress and stability analysis at large
deformation. Int. J. Numer. Methods Eng., 30:833-858, 1990.
D.A. DaDeppo and R. Schmidt. Instability of clamped-hinged circular
arches subjected to a point load. J. Appl. Mech., 97:894-896, 1975.
J .L. Ericksen and C. Truesdell. Exact theory of stress and strain in rods
in shells. Arch. Rat. Mech. Anal., 1:295-323, 1958.
G. Fonder and R.W. Clough. Explicit addition of rigid body motion in
curved finite elements. AIAA J., 11:305-315, 1973.
[FM89]
[FS92]
[GEW89]
[GK93]
[GKW95]
[Gol80]
Coques en grandes rotations 331
C.A. Felippa and C. Militello. Developments in Variational Methods for
High Pe7j01'mance Plate and Shell Elements, in Analytical and Computational
Models of Shells, pages CED-vol 3, 191-215. ASME Publ. (eds.
A.K. Noor et al.), 1989.
D.D. Fox and J.C. Simo. A drill rotation formulation for geometrically
exact shells. Comput. Methods Appl. Mech. Eng., 36:287-302, 1992.
F. Gruttmann, Stein E., and P. Wriggers. Theory and numerics of thin
elastic shells with finite rotations. Ing. Archives, 59:54-67, 1989.
H. Gebhardt and Schweizerhof K. Interpolation of curved shell geometries
by low order finite elements - errors and modifications. Int. J.
Numer. Methods Eng., 36:287-302, 1993.
F. Gruttmann, S. Klinke!, and W. Wagner. A finite rotation shell theory
with application to composite structures, european j. finite elem.
- special issue. {eds. A. Ibrahimbegovic and M. Geradin}, 4:597-632,
H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, MA,
[GWMW94] F. Gruttmann, W. Wagner, L. Meyer, and P. Wriggers. A nonlinear
composite shell element with continuous interlaminar shear stresses.
Comput. Mech., in press:-, 1994.
[GWW92] F. Gruttmann, W. Wagner, and P. Wriggers. A nonlinear quadrilateral
shells with drilling degrees of freedom. Archives Appl. Mech., 62:1-13,
[GZ68] A.E. Green and W. Zerna. Theoretical Elasticity. Oxford University
Press, Oxford, 1968.
[HC83] T.J.R. Hughes and E. Carnoy. Nonlinear finite element shell formulation
accounting for large membrane strains. Comput. Methods Appl. Mech.
Eng., 39:69-82, 1983.
[HL81] T.J.R. Hughes and W.K. Liu. Nonlinear finite element analysis of shells:
Part i. three-dimensional shells. Comput. Methods Appl. Mech. Eng.,
:331-362, 1981.
[HW86] H.C. Huang and W. Wagner. A new 9-node degenerated shell element
with enhanced membrane and shear interpolation. Int. J. Numer. Methods
Eng., 22:73-92, 1986.
[Ibr94] A. Ibrahimbegovic. Stress resultant geometrically nonlinear shell theory
with drilling rotations-part i: A consistent formulation. Comput.
Methods Appl. Mech. Eng., 118:265-284, 1994.
[Ibr95a] A. Ibrahimbegovic. A fe implementation of reissner's geometrically nonlinear
beam theory: Three-dimensional curved beam finite elements.
Comput. Methods Appl. Mech. Eng., 122:10-26, 1995.
[Ibr95b] A. Ibrahimbegovic. On assumed shear strain in finite rotation shell
analysis. Eng. Comput., 12:425-438, 1995.
[Ide81] S. Idelsohn. On the use of deep, shallow or flat shell finite elements
for the analysis of thin shell structures. Comput. Methods Appl. Mech.
Eng., 26:321-330, 1981.
[IF93] A. Ibrahimbegovic and F. Frey. Geometrically nonlinear method of
incompatible modes in application to finite elasticity with independent
rotations. Int. J. Numer. Methods Eng., 36:4185-4200, 1993.
[IF94] A. Ibrahimbegovic and F. Frey. Stress resultant geometrically nonlinear
shell theory with drilling rotations-part ii: Computational aspects.
Comput. Methods Appl. Mech. Eng., 118:285-308, 1994.
[ITW90]
[IW91]
[JF86]
[Koi66]
[Kra93]
[Lan95]
[LP94]
[LSV93]
[Mac83]
[Mar38]
[MDK94]
[MH83]
[MH85]
[Min51]
[MP89)
[Nag72]
A. Ibrahimbegovic, R.L. Taylor, and E.L. Wilson. A robust membrane
quadrilateral element with drilling degrees of freedom. Int. J. Numer.
Methods Eng., 30:445-457, 1990.
A. Ibrahimbegovic and E.L. Wilson. A modified method of incompatible
modes,. Commun. Numer. Methods Eng., 7:187-194, 1991.
Ph. Jetteur and F. Frey. A four node marguerre element for nonlinear
shell analysis. Eng. Comput., 3:276-282, 1986.
W.T. Koiter. On the nonlinear shell theory of thin elastic shells.
Konink. Ned. Acad., Wentensch., B73:1-54, 1966.
W.B. Kratzig. Best nonlinear shell theory including transverse shearing
and stretching. Comput. Methods Appl. Mech. Eng., 103:119-130, 1993.
S. Lang. Differential and Riemannian Manifolds. Springer-Verlag,
Berlin, 1995.
Y. Leino and J. Pitkaranta. On the membrane locking of h - p finite
elements in a cylindrical shell problem. Int. J. Numer. Methods Eng.,
:1053-1070, 1994.
M. Lyly, R. Stenberg, and T. Vihinen. A stable bilinear element for
the reissner-mindlin plate model. Comput. Methods Appl. Mech. Eng.,
:343-357, 1993.
R. MacNeal. Derivation of element stiffness matrices by assumed strain
distribution. Nucl. Eng. Des., 70:3-12, 1983.
K. Marguerre. Zur Theorie der Gekriimmten Platte Grosser
Formfinderung, pages 93-101. Proceedings 5th Int. Conference Appl.
Mech.,. 1938.
J. Merk, D. Dinkier, and B. Kroplin. A comparison of higher order shell
theories. preprint, pages -, 1994.
J.E. Marsden and T.J.R. Hughes. Mathematical Foundations of Elasticity.
Prentice-Hall, Englewoods Cliffs, N.J., 1983.
R. MacNeal and R.L. Harder. A proposed standard set of problems to
test finite element accuracy. Finite Elem. Anal. Design, 1:3-20, 1985.
R.D. Mindlin. Influence of rotatory inertia and shear in flexural motion
of isotropic elastic plates. J. Appl. Mech., 18:31-38, 1951.
j. Makowski and W. Pietraszkiewicz. Work-conjugate boundary conditions
in the nonlinear theory of thin shells. ASME J. Appl. Mech.,
:395-402, 1989.
P.M. N aghdi. The Theory oh Shells and Plates. Encyclopedia of Physics
(ed. S. Flugge), Springer-Verlag, Berlin, 1972.
[NBS89]
[Nio85]
[OC19]
[Par91]
[PB83]
[PC92]
[Pie84]
[Pie86]
[Pie93]
[PS84]
[PS88]
[RC85]
[Rei45]
[Rei72]
[Rei74]
[Rei82]
[RM86]
[SB92]
Coques en grandes rotations 333
A.K. Noor, T. Belytschko, and J.C. Simo. Analytical and Computational
Models for Shells. ASME Publication CED-vol. 3, 1989.
F.I. Niordson. Shell Theory. North-Holland, Amsterdam, 1985.
J.T. Oden and J.R. Cho. Adaptive hpq finite element method of hierarchical
models for plate- and shell-like structures. Proceedings USCCM
III, (ed. J.N. Reddy) vol. 67, Dallas, Texas, 19.
H. Parish. An investigation of a finite rotation four node assumed strain
shell element. Int. J. Numer. Methods Eng., 31:127-150, 1991.
W. Pietraszkiewicz and J. Badur. Finite rotations in the description of
continuum deformation. Int. J. Eng. Science, 21:1097-1115, 1983.
X. Peng and M.A. Crisfield. A consistent co-rotational formulation for
shells: Using the constant stress/constant moment triangle. Int. J. Numer.
Methods Eng., 35:1829-1847, 1992.
W. Pietraszkiewicz. Lagrangian description and incremental formulation
in the nonlinear theory of thin shells. Int. J. Non/in. Mech., 19:115-
, 1984.
W. Pietraszkiewicz. Finite Rotations in Structural Mechanics. SpringerVerlag,
Berlin, 1986.
W. Pietraszkiewicz. Work-conjugate boundary conditions associated
with the total rotation angle of the shell boundary. ASME J. Appl.
Mech., 60:785-786, 1993.
T.H.H. Pian and K. Sumihara. Rational approach for assumed stress
finite elements. Int. J. Numer. Methods Eng., 3:575-586, 1984.
K.C. Park and G. Stanley. A curved c0 shell element based on assumed
natural-coordinate strain. J. Appl. Mech., 108:278-290, 1988.
J.N. Reddy and K. Chandrashekara. Nonlinear analysis of laminated
shells including transverse shear strains. AIAA J., 23:440-441, 1985.
E. Reissner. The effect of transverse shear deformation on the bending
of elastic plates. J. Appl. Mech., 12:69-76, 1945.
E. Reissner. On one-dimensional finite strain beam theory: The plane
problem. J. Appl. Math. Phys., 23:795-804, 1972.
E. Reissner. Theory, Experiment and Design, chapter Linear and Nonlinear
Theory of Shells, in Thin Shell Structures, pages 29-44. ( eds.
Y.C. Fung and E.E. Sechler). Prentice-Hall, 1974.
E. Reissner. A note on two-dimensional finite-deformation theories of
shells. Int. J. Nonlin. Mech., 17:217-221, 1982.
E. Ramm and A. Matzenmiller. Large Deformation Shell Analysis Based
on the Degenerate Concept, in Finite Element Method for Plates and
Shells, pages 365-393. (eds. T.J.R. Hughes and E. Hinton). Pineridge
Press, 1986.
C. Sansour and H. Bufler. An exact finite rotation shell theory, its mixed
variational formulation and its finite element implementation. Int. J.
Numer. Methods Eng., 34:73-115, 1992.
Revue europeenne des elements finis. Volume 6 - n° 3/1997
[SBCK84] H. Stolarski, T. Belytschko, N. Carpenter, and J.M. Kennedy. A simple
triangular curved shell element. Eng. Comput., 1:210-218, 1984.
[SD72] J.G. Simmonds and D.A. Danielson. Nonlinear shell theory with finite
rotation and stress-function vectors. J. Appl. Mech., 39:1085-1090,
[SF89] J.C Simo and D.D. Fox. On a stress resultants geometrically exact
shell model. part i: Formulation and optimal parameterization. Comp.
Methods Appl. Mech. Eng., 72:267-304, 1989.
[SFR90] J.C Simo, D.D. Fox, and M.S. Rifai. On a stress resultants geometrically
exact shell model. part iii: The computational aspects of the nonlinear
theory. Comp. Methods Appl. Mech. Eng., 79:21-70, 1990.
[Sim82] J.G. Simmonds. A Brief on Tensor Analysis. Springer-Verlag, Berlin,
[SK92] J.C Simo and J.G. Kenedy. On a stress resultants geometrically exact
shell model. part v: Nonlinear plasticity, formulation and integration
algorithms. Comp. Methods Appl. Mech. Eng., 96:133-171, 1992.
[SMR89] N. Stander, A. Matzenmiller, and E. Ramm. An assessment of assumed
strain methods in finite rotation shell analysis. Eng. Comput., 6:58-66,
[Sok64] I.S. Sokolnikoff. Tensor Analysis: Theory and Application to Geometry
and Mechanics of Continua. John Wiley, London, 1964.
[Spr86] K. W. Spring. Euler parameters and the use of quaternion algebra in the
manipulation of finite rotations: A review. Mechanism Mach. Theory,
:365-373, 1986.
[Ste94] R. Stenberg. A new finite element formulation for the plate bending
problem. preprint, pages-, 1994.
[Stu64] J. Stuelpnagel. On the parameterization of the three-dimensional rotation
group. SIAM Review, 6:422-430, 1964.
[SV86] J.C. Simo and L. Vu-Quoc. A three- dimensional finite-strain model.
part ii: Computational aspects. Comp. Methods Appl. Mech. Eng.,
:79-116, 1986.
[Tes86]
[Val95]
[Wem69]
[WG93J
[Wun92]
[Zie91]
A. Tessler. Curved beam elements with penalty relaxation. Int. J.
Numer. Methods Eng., 23:2245-2262, 1986.
R. Valid. The Nonlinear Theory of Shells through Variational Principles.
John Wiley, London, 1995.
G. Wempner. Finite elements, finite rotations and small strains of flexible
shells. Int. J. Solids Struct., 5:117-153, 1969.
P. Wrigger and F. Gruttmann. Thin shells with finite rotations in biot
stresses: Theory and fe implementation. Int. J. Numer. Methods Eng.,
:2049-2072, 1993.
W. Wunderlich. EUROMECH 292: Modelling of Shells with Nonlinear
Behavior. TU Miinich, 1992.
O.C. Zienkiewicz. Selected Papers from WCCM II: Modelling of Plates
and Shells, page vol. 34. Int. J. Numer. Methods Eng. 1991.
Coques en grandes rotations 335
(ZTP090] O.C. Zienkiewicz, R.L. Taylor, P. Papadopoulos, and E. Onate. Plate
bending elements with discrete constraints: New triangular elements.
Comput. Struct., 35:505-522, 1990.
(ZTT71] O.C. Zienkiewicz, J. Too, and R.L. Taylor. Reduced integration technique
in general analysis of plates and shells. Int. J. Numer. Methods
Eng., 3:275-290, 1971.