Modélisation « macro » de phénomènes dissipatifs localisés à l’échelle « micro »

Formulation et implantation numérique

Authors

  • Delphine Brancherie Laboratoire de Mécanique et Technologie, ENS de Cachan CNRS/Université Pierre et Marie Curie 61 avenue du Président Wilson 94235 Cachan cedex
  • Adnan Ibrahimbegovic Laboratoire de Mécanique et Technologie, ENS de Cachan CNRS/Université Pierre et Marie Curie 61 avenue du Président Wilson 94235 Cachan cedex

Keywords:

strain localization, fracture, strong discontinuities, finite element methods

Abstract

In this paper, we present a model capable of taking into account both diffuse dissipative mechanisms taking place at the structure scale and localized dissipative mechanisms taking place at finer scale: the localization zones. This is achieved by introducing in a continuum domain discontinuities of the displacement field. The method proposed herein is capable of combining two types of dissipation: a volumic one taken into account by a classical continuum model and a surfacic one taken into account by the introduction of discrete type laws.

Downloads

Download data is not yet available.

References

[ASA 83] ASARO R., « Micromechanics of crystals and polycrystals », Advanced in Applied

Mechanics, vol. 23, 1983, p. 1-115.

[BAŽ 84] BAŽANT Z.P., BELYTSCHKO T., CHANG T.P., « Continuum Theory for Strain

Softening », Journal of Engineering Mechanics, vol. 110, no 12, 1984, p. 1666-1691.

[BEL 99] BELYTSCHKO T., BLACK T., « Elastic Crack Growth in Finite Elements With Minimal

Remeshing », International Journal for Numerical Methods in Engineering, vol. 45,

no 5, 1999, p. 601-620.

[BOR 92] DE BORST R., MUHLHAUS H.B., PAMIN J., SLUYS L.J., « Computational Modelling

of Localisation of Deformation », Computational Plasticity III, Owen and Onate eds,

, p. 483-502.

[HUG 79] HUGHES T.J.R., « Generalization of selective integration procedures to anisotropic

and nonlinear media », International Journal for Numerical Methods in Engineering,

vol. 15, no 9, 1979, p. 1413-1418.

[HUG 87] HUGHES T.J.R., The Finite Element Methods, Prentice-Hall, Englewood-Cliffs,

N.J., 1987.

[IBR 91] IBRAHIMBEGOVI´C A., WILSON E.L., « A modified method of incompatible

modes », Communications in Applied Numerical Methods, vol. 7, 1991, p. 187-194.

[IBR 03] IBRAHIMBEGOVI´C A., BRANCHERIE D., « Combined hardening and softening

constitutive model of plasticity : precursor to shear slip line failure », Computational Mechanics,

vol. 31, 2003, p. 88-100.

[JIR 01] JIRÁSEK M., ZIMMERMANN T., « Embedded crack model : II. Combination with

smeared cracks », International Journal for Numerical Methods in Engineering, vol. 50,

, p. 1291-1305.

[MAZ 84] MAZARS J., « Application de la mécanique de l’endommagment au comportement

non linéaire du béton de structure », Thèse de doctorat, Thèse de doctorat de l’université de

Paris 6, 1984.

[MEL 96] MELENK J.M., BABUŠKA I., « The partition of unity finite element method : Basic

theory and applications », Computer Methods in Applied Mechanics and Engineering,

vol. 136, 1996, p. 289-314.

[NEE 88] NEEDLEMAN A., « Material Rate Dependence and Mesh Sensitivity in Localization

Problems », Computer Methods in Applied Mechanics and Engineering, vol. 63, 1988,

p. 69-85.

[PIJ 87] PIJAUDIER-CABOT G., BAŽANT ., « Nonlocal damage theory », ASCE Journal of

Engineering Mechanics, vol. 113, 1987, p. 1512-1533.

[WEL 01] WELLS G.N., SLUYS L.J., « A new method for modelling cohesive cracks using

finite elements », International Journal for Numerical Methods in Engineering, vol. 50,

, p. 2667-2682.

[WIL 73] WILSON E.L., TAYLOR R.L., DOHERTY W.P., GHABOUSSI J., « Incompatible

displacement models », FENVES S., AL., Eds., Numerical and Computer Methods in

Structural Mechanics, p. 43-57, Academic Press, 1973.

[WIL 90] WILSON E.L., IBRAHIMBEGOVI´C A., « Use of incompatible displacement modes

for the calculation of element stiffnesses or stresses », Finite Elements in Analysis and

Design, vol. 7, 1990, p. 229-241.

Downloads

Published

2004-10-30

How to Cite

Brancherie, D. ., & Ibrahimbegovic, A. (2004). Modélisation « macro » de phénomènes dissipatifs localisés à l’échelle « micro »: Formulation et implantation numérique. European Journal of Computational Mechanics, 13(5-7), 461–473. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2295

Issue

Section

Original Article