Schéma dissipatif HHT d’intégration temporelle pour un modèle de poutre en grandes rotations
Keywords:
dynamics, time integration, dissipative HHT schemeAbstract
In this work we present au extension of HHT dissipative numerical integration scheme for the dynamics of structures undergoing large rotations. The problem used to illustrate the proposed modification pertains to so-called ’geometrically exact’ three-dimensional beam theory. Among different possibilities to parameterize the finite rotations, we choose a material representation of the rotation vector, which simplified the construction of time-integration schemes. We also present the essential details of the finite element implementation.
Downloads
References
[ALM 97] ALMIKDAD M., IBRAHIMBEGOVIC A., (( Dynamique et schémas d’intégration
pour modèles de poutres géométriquement exacts )), Revue Euro. Elém. Finis, vol. 6 No
, 1997, p. 471-502.
[AUB 95] AUBRY D., VAILHEN C., DRESSLER B., LUCAS D., (( Nonlinear dynamic analysis
of frictional contact between shell structures )), 9th DYMAT Tech. Conf. Mat. and Struc.
Modelling in collision reasearch, TU-Munich, vol. I, 1995.
[BAR 98] BARRACO A., GILBERT M., (( Quasi exact solutions for some elastodynamics problems
)), Fourth World Congress on Computational Mechanics (IV WCCM), vol. CD,
[BAU 95] BAUCHAU O., DAMILANO G., THERON J., (( Numerical integration of non-linear
elastic multibody systems )), Int. J. Numer. Methods Eng., vol. 38, 1995, p. 2727-2751.
[BOT 98] BOTTASSO C. L., BORRI M., (( Integrating finte rotations )), Comput. Methods
Appl. Mech. Eng., in press, vol. 164, 1998, p. 307-331.
[CAR 88] CARDONA A., GERADIN M., (( A beam finite element non-linear theory with finite
rotations )), Int. J. Numer. Methods Eng., vol. 26, 1988, p. 2403-2438.
[CAR 89] CARDONA A., GERADIN M., (( Time integration of the equations of motion in
mechanism analysis )), Comput. Struc, vol. 33, 1989, p. 801-820.
[HIL 77] HILBER H., HUGHES T., TAYLOR R., (( Improved numerical dissipation for time
integration algorithms in structural dynamics )), Earthq. Eng. Struc. Dynam., vol. 5, 1977,
p. 283-292.
[IBR 95a] IBRAHIMBEGOVIC A., (( On finite element implementation of geometrically nonlinear
Reissner’s beam theory: three dimensional curved beam element )), Comput. Methods
Appl. Mech. Eng., vol. 112, 1995, p. 11-26.
[IBR 95b] IBRAHIMBEGOVIC A., FREY F., KOZAR I., (( Computational aspect of vector-like
parameterization of three dimensional finite rotations )), Int. J. Numer. Methods. Eng.,
vol. 38, 1995, p. 3653-3673.
[IBR 97] IBRAHIMBEGOVIC A., (( On the choice of finite rotation parameters )), Comput.
Methods Appl. Mech. Eng., vol. 149, 1997, p. 49-71.
[IBR 98] IBRAHIMBEGOVIC A., ALMIKDAD M., (( Finite rotations in dynamics of beams and
implicit time-stepping schemes )), Int. J. Numer. Methods. Eng., vol. 41, 1998, p. 781-814.
[IBR 99] IBRAHIMBEGOVIC A., MAMOURI S., (( Nonlinear dynamics of flexible beams in
planar motion:formulation and time-stepping schemes for stiff problems )), Comput. Struc.,
vol. 70, 1999, p. 1-22.
[IDE 89] IDER S., AMIROUCHE F., (( Nonlinear modeling of flexible multibody systems dynamics
subjected to variable constraints )), J. Appl. Mech., vol. 56, 1989, p. 444-450.
[JEL 96] JELENIC G., CRISFIELD M., (( Non-linear ’master-slave’ relationship for joints in
D beams with large rotations )), Comput. Methods. Appl. Mech. Eng., vol. 135, 1996,
p. 211-228.
[JEL 98] JELENIC G., CRISFIELD M., (( Interpolation of rotational variables in nonlinear dynamics
of 3d beams )), Int. J. Numer. Methods Eng., vol. 43, 1998, p. 1193-1222.
[KAN 85] KANE T. R., LEVINSON D., Dynamics Theory and Applications, Mc-Graw Hill,
New York, 1985.
[KUH 98] KUHL D., CRISFIELD M. A., (( Energy-conserving and decaying algorithms in
nonlinear structural dynamics )), Int. J. Numer. Methods Eng., vol. 45, 1998, p. 569-599.
[MAR 83] MARSDEN J. E., HUGHES T., Mathematical foundations of elasticity, Prentice-
Hall, Englewoods Cliffs, N.J., 1983.
[SIM 86] SIMO J., VU-QUOC L., (( On the dynamics of flexible beams under large overall
motions the plane case, Part 1 and 2 )), ASME J. Appl. Mech., vol. 53, 1986, p. 849-863.
[SIM 95] SIMO J., TARNOW N., DOBLARE M., (( Nonlinear dynamics of three-dimensional
rods: Exact energy and momentum conserving algorithm )), Int. J. Numer. Methods Eng.,
vol. 38, 1995, p. 1431-1473.
[VEU 76] FRAEIJS DE VEUBEKE B., (( The dynamics of flexible bodies )), Int. J. Engng.
Science, vol. 14, 1976, p. 895-913.