Modèles équilibre pour l’analyse duale
Keywords:
global error estimation, dual analysis, equilibrium modelsAbstract
The pure dual analysis is one of the first methods developed to perform the estimation of the global discretization error of finite elements analysis. It is based on the comparison of two finite elements solutions, one of which being of the displacement type (kinematically admissible), the second one being of the equilibrium type (statically admissible). This work presents two methods allowing to create equilibrium elements. The first one which can be seen as an hybrid method, allows to compute high-order equilibrium solutions of 2D problems. The second method is of the pure equilibrium type. Its recent extension to 3D problems with tetrahedral mesh is presented here. Those approaches enabled us to present some results of global error estimation by dual analysis.
Downloads
References
Beckers P., Les fonctions de tension dans la méthode des éléments finis, Thèse de doctorat,
Université de Liège, 1972.
Beckers P., Kempeneers M., « Development of an equilibrium tetraedral finite element »,
International Congress on Quality Assesment of Numerical Simulations in Engineering,
Concepción, 2002.
Debongnie J.F., Zhong H.G., Beckers P., « Dual analysis with general boundary conditions »,
Computer methods in applied mechanics and engineering, 122, 1995, p. 183-192.
Debongnie J.F., Beckers P., « Recent advances in the dual analysis theory », IV Congreso de
Métodos Numéricos en Ingeniería, Sevilla, 1999.
Florentin E., Sur l’évaluation de la qualité locale des contraintes éléments finis en élasticité
tridimensionnelle, Thèse de doctorat, Ecole Normale Supérieure de Cachan, 2002.
Fraeijs de Veubeke B., « Upper and lower bounds in matrix structural analysis »
AGARDograf, 72, 1964, p. 165-201.
Fraeijs de Veubeke B., « Stress analysis: displacements and equilibrium models in the finite
elements method », Symposium on Numerical methods in elasticity, Swansea, 1964,
Chapter 9 of Stress Analysis, Edit. Zienkiewicz O.C., Holister G.S., Wiley, London 1965.
Hammer P.C., Marlowe D.J., Stroud A.H., « Numerical Integration Over Simplexes and
Cones », Math. Tables other Aids Comp., vol. 10, 1956, p. 130-136.
Ladevèze P., Pelle J.P., La maîtrise du calcul en mécanique linéaire et non linéaire, Hermes-
Lavoisier, 2001.
Maunder E.A.W., Moitinho de Almeida J.P., Ramsay A.C.A., « A general formulation of
equilibrium macro-elements with control of spurious kinematic modes », Int. J. Numer.
Methods Engrg., 39, 1996, p. 3175-3194.
Maunder E.A.W., Moitinho de Almeida J.P., « Hybrid-equilibrium macro-elements with control
of spurious kinematic modes », Comp. Assist. Mech. Eng. Sci. 4, 1997, p. 587-605.
Moitinho de Almeida J.P., Modelos de elementos finitos para a análise elastoplástica, Ph.D.
Thesis, Technical University of Lisbon, 1989.
Moitinho de Almeida J.P., Freitas J.A.T., « Alternative approach to the formulation of hybrid
equilibrium finite elements », Comp. Struct., 40, 1991, p. 1043-1047.
Moitinho de Almeida J.P., Pereira O.J.B.A., « A set of hybrid equilibrium finite element
models for the analysis of three-dimensional solids », Int. J. Numer. Methods Engrg., 39,
, p. 2789-2802.
Pasteels P., Elément fini de tétraèdre à équilibre de rotation dualisé et pénalisé, Travail de fin
d’études, Université de Liège, 2001.
Pereira O.J.B.A., Utilização de elementos finitos de equilíbrio em refinamento adaptativo,
PhD thesis, Universidade Técnica de Lisboa, 1996.
Sander G., « Application of the dual analysis principle » B. Fraeijs de Veubeke, ed., High
Speed Computing of Elastic Structures, 1971.