Modèles équilibre pour l’analyse duale

Authors

  • Martin Kempeneers Département AéroSpatiale Mécanique et mAtériaux (ASMA) Université de Liège Institut de Mécanique et Génie Civil (B52) 1, Chemin des Chevreuils – 4000 Liège (Belgique)
  • Pierre Beckers Département AéroSpatiale Mécanique et mAtériaux (ASMA) Université de Liège Institut de Mécanique et Génie Civil (B52) 1, Chemin des Chevreuils – 4000 Liège (Belgique)
  • José Paulo Moitinho de Almeida Departamento de Engenharia Civil e Arquitectura Instituto Superior Técnico Av. Rovisco Pais, 1049-001 Lisboa (Portugal)
  • Orlando J. B. Almeida Pereira Departamento de Engenharia Civil e Arquitectura Instituto Superior Técnico Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

Keywords:

global error estimation, dual analysis, equilibrium models

Abstract

The pure dual analysis is one of the first methods developed to perform the estimation of the global discretization error of finite elements analysis. It is based on the comparison of two finite elements solutions, one of which being of the displacement type (kinematically admissible), the second one being of the equilibrium type (statically admissible). This work presents two methods allowing to create equilibrium elements. The first one which can be seen as an hybrid method, allows to compute high-order equilibrium solutions of 2D problems. The second method is of the pure equilibrium type. Its recent extension to 3D problems with tetrahedral mesh is presented here. Those approaches enabled us to present some results of global error estimation by dual analysis.

Downloads

Download data is not yet available.

References

Beckers P., Les fonctions de tension dans la méthode des éléments finis, Thèse de doctorat,

Université de Liège, 1972.

Beckers P., Kempeneers M., « Development of an equilibrium tetraedral finite element »,

International Congress on Quality Assesment of Numerical Simulations in Engineering,

Concepción, 2002.

Debongnie J.F., Zhong H.G., Beckers P., « Dual analysis with general boundary conditions »,

Computer methods in applied mechanics and engineering, 122, 1995, p. 183-192.

Debongnie J.F., Beckers P., « Recent advances in the dual analysis theory », IV Congreso de

Métodos Numéricos en Ingeniería, Sevilla, 1999.

Florentin E., Sur l’évaluation de la qualité locale des contraintes éléments finis en élasticité

tridimensionnelle, Thèse de doctorat, Ecole Normale Supérieure de Cachan, 2002.

Fraeijs de Veubeke B., « Upper and lower bounds in matrix structural analysis »

AGARDograf, 72, 1964, p. 165-201.

Fraeijs de Veubeke B., « Stress analysis: displacements and equilibrium models in the finite

elements method », Symposium on Numerical methods in elasticity, Swansea, 1964,

Chapter 9 of Stress Analysis, Edit. Zienkiewicz O.C., Holister G.S., Wiley, London 1965.

Hammer P.C., Marlowe D.J., Stroud A.H., « Numerical Integration Over Simplexes and

Cones », Math. Tables other Aids Comp., vol. 10, 1956, p. 130-136.

Ladevèze P., Pelle J.P., La maîtrise du calcul en mécanique linéaire et non linéaire, Hermes-

Lavoisier, 2001.

Maunder E.A.W., Moitinho de Almeida J.P., Ramsay A.C.A., « A general formulation of

equilibrium macro-elements with control of spurious kinematic modes », Int. J. Numer.

Methods Engrg., 39, 1996, p. 3175-3194.

Maunder E.A.W., Moitinho de Almeida J.P., « Hybrid-equilibrium macro-elements with control

of spurious kinematic modes », Comp. Assist. Mech. Eng. Sci. 4, 1997, p. 587-605.

Moitinho de Almeida J.P., Modelos de elementos finitos para a análise elastoplástica, Ph.D.

Thesis, Technical University of Lisbon, 1989.

Moitinho de Almeida J.P., Freitas J.A.T., « Alternative approach to the formulation of hybrid

equilibrium finite elements », Comp. Struct., 40, 1991, p. 1043-1047.

Moitinho de Almeida J.P., Pereira O.J.B.A., « A set of hybrid equilibrium finite element

models for the analysis of three-dimensional solids », Int. J. Numer. Methods Engrg., 39,

, p. 2789-2802.

Pasteels P., Elément fini de tétraèdre à équilibre de rotation dualisé et pénalisé, Travail de fin

d’études, Université de Liège, 2001.

Pereira O.J.B.A., Utilização de elementos finitos de equilíbrio em refinamento adaptativo,

PhD thesis, Universidade Técnica de Lisboa, 1996.

Sander G., « Application of the dual analysis principle » B. Fraeijs de Veubeke, ed., High

Speed Computing of Elastic Structures, 1971.

Downloads

Published

2003-06-11

How to Cite

Kempeneers, M. ., Beckers, P. ., Almeida, J. P. M. de ., & Pereira, O. J. B. A. . (2003). Modèles équilibre pour l’analyse duale. European Journal of Computational Mechanics, 12(6), 737–760. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2411

Issue

Section

Original Article