Méthodes des éléments finis espace-temps et remaillage

Authors

  • Lucas Adélaïde LMGC, Université de Montpellier II case 048, Place Eugène Bataillon F-34095 Montpellier
  • Franck Jourdan LMGC, Université de Montpellier II case 048, Place Eugène Bataillon F-34095 Montpellier
  • Claude Bohatier LMGC, Université de Montpellier II case 048, Place Eugène Bataillon F-34095 Montpellier

Keywords:

re-meshing, finite elements, space-time, contact, friction

Abstract

The aim of this paper is double. Firstly, a space-time finite element method is presented and compared with the other existing methods. Then, a mesh adaptation method developed for this space-time finite element approach, is presented. This new re-meshing method is based on a “space-time frontal” solver. It allows to adapt the mesh in space and time, keeping linear system sizes as small as in the “classical” mesh adaptation methods.

Downloads

Download data is not yet available.

References

ADÉLAÏDE L., Méthode des éléments finis espace-temps : adaptation du maillage en cours

d’évolution avec contact, Thèse de doctorat, Université de Montpellier II, 2001.

ADÉLAÏDE L., JOURDAN F., BOHATIER C., « New results on mesh adaptation in Space-Time

Finite Element Method », ETCE 2002 conference Engineering Technology Conference

on Energy, Structural dynamics and vibration , Experimental and analytical analysis, 4-5

février, 2002, Houston, Référence STRUC-29042.

AUBRY D., LUCAS D., TIE B., « Adaptive strategy for transient/ coupled problems Aplications

to thermoelasticity and elastodynamics », Comput. Methods Appl. Mech. Engrg. ,

vol. 176, 1999, p. 41-50.

BROKKEN D., AL, « Numerical modelling of the metal blanking process », Materials

Processing Technology, vol. 83, 1998, p. 192-199.

BAJER C., « Adaptative mesh in dynamic problem by the space-time approach », Comput.

And Struct. , vol. 33, n2 1989, p. 319-325.

BAJER C.„ BOHATIER C., « The soft way method and the velocity formulation », Comput.

And Struct. , vol. 55, n6 1993, p. 1015-1025.

BAJER C. , BOHATIER C., « Kinematic approach to dynamic contact problems, the geometrical

soft way method », Eng. Transactions, Polish Scientific Publishers, vol. 43, n1-2,

, p. 101-111.

BOISSER P. , AL., « A new approach in non linear mechanics : the LArge Time INcrement

method », Int. J. for Num. Meth. Eng. , vol. 29, 1990, p. 647-663.

CHENOT J-L. , BAY F., « An overview of numerical modelling techniques », Journal of

materials Processing Technology, vol. 80-81, 1998, p. 8-15.

COUPEZ T., « Génération et Adaptation de maillage par optimisation locale », Revue Européenne

des éléments finis, vol. 9, n4, 2000, p. 403-423.

DAUTRAY R. , LIONS J-L., « Evolution : numérique, transport », Analyse mathématique et

calcul numérique pour les sciences et les techniques, vol. 9, p. 921-922.

DONEA R., HUERTA A. , SARRATE J., « Arbitrary Lagrangian-Eulerian for fluid-rigid body

interaction », Comput. Methods Appl. Mech. Engrg., vol. 190, 2001, p. 3171-3188.

FARHAT C. , DEGAND C., « A three-dimensional torsional spring analogy method for unstructured

dynamic meshes », Computers and Structures , vol. 80, 2002, p. 305-316.

FENG Y. T. , PERIC D., « A time-adaptive space-time finite element method for incompressible

Lagrangian flows with free surfaces : computational issues », Comput. Methods Appl.

Mech. Engrg. , vol. 190, 2000, p. 499-518.

HUGHES T. J. R. , HULBERT G., « Space-time finite element methods for elastodynamics :

formulations and error estimates », Comput. Methods Appl. Mech. Engrg. , vol. 66, 1988,

p. 339-363.

IDESMAN A., NIEKAMP R. , STEIN E., « Continuous and discontinuous Galerkin methods

with finite elements in space and time for parallel computing of viscoelastic deformation »,

Comput. Methods Appl. Mech. Engrg. , vol. 190, 2000, p. 1049-1063.

JOURDAN F. , BUSSY P., « Large time increment method in dynamic regularization : sheet

cutting simulations », Comput. Methods Appl. Mech. Engrg. , vol. 190, 2000, p. 1245-

KACZKOWSKI L., « The method of space time elements in dynamics of structures », Journal

of Technical Physics, vol. 16, n1, 1975, p. 69-84.

KACZKOWSKI L., LANGER J., « Synthesis of the space-time finite element method », Arch.

In˙z. Lad., vol. 26, n1, 1980, p. 11-17.

KARAOGLAN L., K. NOOR A., « Space-time finite element methods for sensitivity analysis

of contact/impact response of axisymmetric composite structures », Comput. Methods

Appl. Mech. Engrg. , vol. 144, 1997, p. 371-389 .

LESOINNE M., FARHAT C., « Geometric conservation laws for flow problems with moving

boundaries and deformable meshes, and their impact on aeroelastic computations », Comput.

Methods Appl. Mech. Engrg. , vol. 134, 1996, p. 71-90.

LI X. D., WIBERG N.-E., « Implementation and adaptivity of a space-time finite element

method for structural dynamics », Comput. Methods Appl. Mech. Engrg. , vol. 156, 1998,

p. 211-229.

LIN J., BALL A ; A. , ZHENG J. J., « Surface modelling and mesh generation for simulating

superplastic forming », J. of Material Processing Technology , vol. 80-81, 1998, p. 613-

ODEN J.T., « A general theory of finite elements, I. Topological considerations, II. Applications

», Int.J. Num. Meth. Eng., 1969, p. 205-221, 247-259.

Downloads

Published

2003-06-24

How to Cite

Adélaïde, L. ., Jourdan, F. ., & Bohatier, C. . (2003). Méthodes des éléments finis espace-temps et remaillage. European Journal of Computational Mechanics, 12(4), 427–458. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2433

Issue

Section

Original Article

Most read articles by the same author(s)