Méthodes des éléments finis espace-temps et remaillage
Keywords:
re-meshing, finite elements, space-time, contact, frictionAbstract
The aim of this paper is double. Firstly, a space-time finite element method is presented and compared with the other existing methods. Then, a mesh adaptation method developed for this space-time finite element approach, is presented. This new re-meshing method is based on a “space-time frontal” solver. It allows to adapt the mesh in space and time, keeping linear system sizes as small as in the “classical” mesh adaptation methods.
Downloads
References
ADÉLAÏDE L., Méthode des éléments finis espace-temps : adaptation du maillage en cours
d’évolution avec contact, Thèse de doctorat, Université de Montpellier II, 2001.
ADÉLAÏDE L., JOURDAN F., BOHATIER C., « New results on mesh adaptation in Space-Time
Finite Element Method », ETCE 2002 conference Engineering Technology Conference
on Energy, Structural dynamics and vibration , Experimental and analytical analysis, 4-5
février, 2002, Houston, Référence STRUC-29042.
AUBRY D., LUCAS D., TIE B., « Adaptive strategy for transient/ coupled problems Aplications
to thermoelasticity and elastodynamics », Comput. Methods Appl. Mech. Engrg. ,
vol. 176, 1999, p. 41-50.
BROKKEN D., AL, « Numerical modelling of the metal blanking process », Materials
Processing Technology, vol. 83, 1998, p. 192-199.
BAJER C., « Adaptative mesh in dynamic problem by the space-time approach », Comput.
And Struct. , vol. 33, n2 1989, p. 319-325.
BAJER C.„ BOHATIER C., « The soft way method and the velocity formulation », Comput.
And Struct. , vol. 55, n6 1993, p. 1015-1025.
BAJER C. , BOHATIER C., « Kinematic approach to dynamic contact problems, the geometrical
soft way method », Eng. Transactions, Polish Scientific Publishers, vol. 43, n1-2,
, p. 101-111.
BOISSER P. , AL., « A new approach in non linear mechanics : the LArge Time INcrement
method », Int. J. for Num. Meth. Eng. , vol. 29, 1990, p. 647-663.
CHENOT J-L. , BAY F., « An overview of numerical modelling techniques », Journal of
materials Processing Technology, vol. 80-81, 1998, p. 8-15.
COUPEZ T., « Génération et Adaptation de maillage par optimisation locale », Revue Européenne
des éléments finis, vol. 9, n4, 2000, p. 403-423.
DAUTRAY R. , LIONS J-L., « Evolution : numérique, transport », Analyse mathématique et
calcul numérique pour les sciences et les techniques, vol. 9, p. 921-922.
DONEA R., HUERTA A. , SARRATE J., « Arbitrary Lagrangian-Eulerian for fluid-rigid body
interaction », Comput. Methods Appl. Mech. Engrg., vol. 190, 2001, p. 3171-3188.
FARHAT C. , DEGAND C., « A three-dimensional torsional spring analogy method for unstructured
dynamic meshes », Computers and Structures , vol. 80, 2002, p. 305-316.
FENG Y. T. , PERIC D., « A time-adaptive space-time finite element method for incompressible
Lagrangian flows with free surfaces : computational issues », Comput. Methods Appl.
Mech. Engrg. , vol. 190, 2000, p. 499-518.
HUGHES T. J. R. , HULBERT G., « Space-time finite element methods for elastodynamics :
formulations and error estimates », Comput. Methods Appl. Mech. Engrg. , vol. 66, 1988,
p. 339-363.
IDESMAN A., NIEKAMP R. , STEIN E., « Continuous and discontinuous Galerkin methods
with finite elements in space and time for parallel computing of viscoelastic deformation »,
Comput. Methods Appl. Mech. Engrg. , vol. 190, 2000, p. 1049-1063.
JOURDAN F. , BUSSY P., « Large time increment method in dynamic regularization : sheet
cutting simulations », Comput. Methods Appl. Mech. Engrg. , vol. 190, 2000, p. 1245-
KACZKOWSKI L., « The method of space time elements in dynamics of structures », Journal
of Technical Physics, vol. 16, n1, 1975, p. 69-84.
KACZKOWSKI L., LANGER J., « Synthesis of the space-time finite element method », Arch.
In˙z. Lad., vol. 26, n1, 1980, p. 11-17.
KARAOGLAN L., K. NOOR A., « Space-time finite element methods for sensitivity analysis
of contact/impact response of axisymmetric composite structures », Comput. Methods
Appl. Mech. Engrg. , vol. 144, 1997, p. 371-389 .
LESOINNE M., FARHAT C., « Geometric conservation laws for flow problems with moving
boundaries and deformable meshes, and their impact on aeroelastic computations », Comput.
Methods Appl. Mech. Engrg. , vol. 134, 1996, p. 71-90.
LI X. D., WIBERG N.-E., « Implementation and adaptivity of a space-time finite element
method for structural dynamics », Comput. Methods Appl. Mech. Engrg. , vol. 156, 1998,
p. 211-229.
LIN J., BALL A ; A. , ZHENG J. J., « Surface modelling and mesh generation for simulating
superplastic forming », J. of Material Processing Technology , vol. 80-81, 1998, p. 613-
ODEN J.T., « A general theory of finite elements, I. Topological considerations, II. Applications
», Int.J. Num. Meth. Eng., 1969, p. 205-221, 247-259.