Simulation de la propagation des vagues à l’aide d’un modèle de type Boussinesq étendu
Keywords:
Boussinesq-like model, frequency behaviour, dispersion equation, open boundary, weakly reflecting boundary, active absorbing boundaryAbstract
A new type of extended Boussinesq model has been developed by decomposing each horizontal component of velocity on a basis of functions. The aim of this paper is firstly to present the theoretical bases of this finite elements model and to study his frequency behaviour. Thanks to a good approximation of the dispersion equation, this model simulates the deformation of waves over an asymmetric bar with accuracy. The adaptation of the weakly reflecting boundary or radiation conditions of Sommerfeld to this kind of model is then presented with their limits for a signal composed of several harmonics. Reflection errors coming from an active absorbing boundary are then assessed.
Downloads
References
[BOU 72] BOUSSINESQ J., « Théorie des ondes et des remous qui se propagent le long d’un
canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses
sensiblement pareilles de la surface au fond », J. Math. Pures Appl., vol. 17, 1872,
p. 55-108.
[COW 87] COWAN A. D. M., « The range of application of Boussinesq type numerical short
waves models », International Association for Hydraulic Research, Lausanne, Suisse,
, p. 379-384.
[DIN 94] DINGEMANS M., « Comparison of Computations with Boussinesq-like models and
laboratory measurements », Mast-g8-m note, project 1, 1994.
[DIN 97] DINGEMANS M., Water Wave propagation over uneven bottoms, Advanced Series
on Ocean Engineering, 1997.
[DON 97] DONGEREN A. V., SVENDSEN I., « Absorbing-generating boundary condition for
shallow water models », Journal of Waterway, Port, Coastal and Ocean Engineering,
vol. 123, 1997, p. 303-313.
[ENG 77] ENGQUIST B., MAJDA A., « Absorbing boundary conditions for the numerical simulation
of waves », Mathematics of computation, vol. 31, n