Bifurcations primaire et secondaires d’un cylindre sous compression axiale
Keywords:
Bifurcation, buckling, elastoplasticity, axially compressed cylindersAbstract
An elastoplastic thin shell finite element model with finite rotations is presented in this paper in order to compute the post-buckling behaviour of shell-type structures. A generalized arc-length method and appropriate continuation methods have been implemented to deal with both limit and bifurcation points. A particular attention is devoted to cylindrical shells under axial compression producing axisymmetric and diamond modes, but also transition modes corresponding to secondary bifurcating branches.
Downloads
References
[AFL 88] AFLAK W. F., « Flambage plastique de coques cylindriques sous compression
axiale. Influence des imperfections géométriques et des imperfections de conditions aux
limites », Thèse de doctorat, INSA de Lyon, 1988.
[AMA 72] AMAZIGO J. C., BUDIANSKY B., « Asymptotic formulas for the buckling stresses
of axially compressed cylinders with localized or random axisymmetric imperfections », J.
Applied Mechanics, 1972, p. 179-184.
[ARI 69] ARIARATNAM S. T., DUBEY R. N., « Instability in an elastic-plastic cylindrical
shell under axial compression », J. Applied Mechanics, 1969, p. 47-50.
[BAT 65] BATTERMAN S. C., « Plastic buckling of axially compressed cylindrical shells »,
AIAA Journal, vol. 3, no 2, 1965, p. 316-325.
[BAT 66] BATTERMAN S. C., LEE L. H. N., « Effect of modes on plastic buckling of compressed
cylindrical shells », AIAA Journal, vol. 4, no 12, 1966, p. 2255-2257.
[BAT 68] BATTERMAN S. C., « Free-edge plastic buckling of axially compressed cylindrical
shells », J. Applied Mechanics, 1968, p. 73-79.
[BES 94] BESSELING J. F., VAN DER GIESSEN E., Mathematical modelling of inelastic deformation,
Chapman & Hall, 1994.
[BRA 97] BRANK B., PERIC D., DAMJANIC F. B., « On large deformations of thin elastoplastic
shells : implementation of a finite rotation model for quadrilateral shell element »,
Int. J. Numerical Methods in Engineering, vol. 40, 1997, p. 689-726.
[BUD 72] BUDIANSKY B., HUTCHINSON J. W., « Buckling of circular cylindrical shells under
axial compression », Contributions to the Theory of Aircraft Structures, Delft University
Press, 1972, p. 239-259.
[CAS 80] CASEY J., NAGHDI P. M., « A remark on the use of the decomposition F=FeFp in
plasticity », J. Applied Mechanics, vol. 47, 1980, p. 672-675.
[CRI 83] CRISFIELD M. A., « An arc-length method including line searches and accelerations
», Int. J. Numerical Methods in Engineering, vol. 19, 1983, p. 1269-1289.
[CRI 84] CRISFIELD M. A., « Accelerating and damping the modified Newton-Raphson method
», Computers and Structures, vol. 18, no 3, 1984, p. 395-407.
[DON 76] DONNELL L. H., Beams, plates and shells, Mc Graw-Hill, 1976.
[GIE 89a] VAN DER GIESSEN E., « Continuum models of large deformation plasticity, Part I :
Large deformation plasticity and the concept of a natural reference state », Eur. J. Mech.
A/Solids, vol. 8, 1989, p. 15-34.
[GIE 89b] VAN DER GIESSEN E., « Continuum models of large deformation plasticity, Part
II : A kinematic hardening model and the concept of a plastically induced orientational
structure », Eur. J. Mech. A/Solids, vol. 8, 1989, p. 89-108.
[GOT 99] GOTO Y., ZHANG C., « Plastic buckling transition modes in moderately thick cylindrical
shells », J. Engineering Mechanics, vol. 125, no 4, 1999, p. 426-434.
[GRE 65] GREEN A. E., NAGHDI P. M., « A general theory of an elastic-plastic continuum »,
Archive for Rational Mechanics and Analysis, vol. 18, 1965, p. 251-281.
[GRE 71] GREEN A. E., NAGHDI P. M., « Some remarks on elastic-plastic deformation at
finite strain », Int. J. Engineering Sciences, vol. 9, 1971, p. 1219-1229.
[GUP 00] GUPTA N. K., ABBAS H., « Mathematical modeling of axial crushing of cylindrical
tubes », Thin-Walled Structures, vol. 38, 2000, p. 355-375.
[GUS 00] GUSIC G., COMBESCURE A., JULLIEN J. F., « The influence of circumferential thickness
variations on the buckling of cylindrical shells under external pressure », Computers
and Structures, vol. 74, 2000, p. 461-477.
[HAL 75] HALPHEN B., NGUYEN Q. S., « Sur les matériaux standard généralisés », Journal
de Mécanique, vol. 14, no 1, 1975, p. 39-63.
[HUT 72] HUTCHINSON J. W., « On the post-buckling behaviour of imperfection-sensitive
structures in the plastic range », J. Applied Mechanics, 1972, p. 155-162.
[HUT 74] HUTCHINSON J. W., « Plastic buckling », Advances in Applied Mechanics, vol. 14,
, p. 67-144.
[LAM 92] LAM W. F., MORLEY C. T., « Arc-length method for passing limit points in structural
calculation », J. Structural Engineering, vol. 118, no 1, 1992, p. 169-185.
[LAN 00] LANCASTER E. R., CALLADINE C. R., PALMER S. C., « Paradoxical buckling
behaviour of a thin cylindrical shell under axial compression », Int. J. Mechanical Sciences,
vol. 42, 2000, p. 843-865.
[LEE 67] LEE E. H., LIU D. T., « Finite-strain elastic-plastic theory with application to planewave
analysis », J. Applied Physics, vol. 38, 1967, p. 19-27.
[LEE 69] LEE E. H., « Elastic-plastic deformations at finite strains », J. Applied Mechanics,
vol. 36, 1969, p. 1-6.
[LIM 91] LIMAM A., « Flambage de coques cylindriques sous combinaison de chargements.
Pression interne et compression axiale », Thèse de doctorat, INSA de Lyon, 1991.
[MAN 00] MANDAL P., CALLADINE C. R., « Buckling of thin cylindrical shells under axial
compression », Int. J. Solids Structures, vol. 37, 2000, p. 4509-4525.
[NAG 75] NAGHDI P. M., TRAPP J. A., « Restrictions on constitutive equations for finitely
deformed elastic-plastic materials », Quart. J. Mech. Appl. Math., vol. 28, no 1, 1975,
p. 25-46.
[NAG 90] NAGHDI P. M., « A critical review of the state of finite plasticity », J. Appl. Math.
Phys., vol. 41, 1990, p. 315-394.
[NEM 79] NEMAT-NASSER S., « Decomposition of strain measures and their rates in finite
deformation elastoplasticity », Int. J. Solids Structures, vol. 15, 1979, p. 155-166.
[NEM 82] NEMAT-NASSER S., « On finite deformation elasto-plasticity », Int. J. Solids Structures,
vol. 18, no 10, 1982, p. 857-872.
[NGU 00] NGUYEN Q. S., Stabilité et mécanique non-linéaire, Hermès, 2000.
[PEE 00] PEEK R., « Axisymmetric wrinkling of cylinders with finite strain », J. Engineering
Mechanics, vol. 126, no 5, 2000, p. 455-461.
[RIK 79] RIKS E., « An incremental approach to the solution of snapping and buckling problems
», Int. J. Solids Structures, vol. 15, 1979, p. 524-551.
[RIK 91] RIKS E., « On formulations on path-following techniques for structural stability analysis
», New advances in computational structural mechanics, Elsevier, 1991, p. 65-80.
[SEY 94] SEYDEL R., Practical bifurcation and stability analysis. From equilibrium to chaos,
Springer-Verlag, 1994.
[SIM 86] SIMO J. C., TAYLOR R. L., « A return mapping algorithm for plane stress elastoplasticity
», Int. J. Numerical Methods in Engineering, vol. 22, 1986, p. 649-670.
[SIN 99] SINGACE A. A., « Axial crushing analysis of tubes deforming in the multi-lobe
mode », Int. J. Mechanical Sciences, vol. 41, 1999, p. 865-890.
[TVE 83] TVERGAARD V., « On the transition from a diamond mode to an axisymmetric
mode of collapse in cylindrical shells », Int. J. Solids Structures, vol. 19, no 10, 1983,
p. 845-856.