Bifurcations primaire et secondaires d’un cylindre sous compression axiale

Authors

  • Philippe Le Grognec Université de Nantes Laboratoire de Génie Civil de Nantes-Saint Nazaire 2, rue de la Houssinière BP 92208 F-44322 Nantes Cedex 3
  • Anh Le Van Université de Nantes Laboratoire de Génie Civil de Nantes-Saint Nazaire 2, rue de la Houssinière BP 92208 F-44322 Nantes Cedex 3

Keywords:

Bifurcation, buckling, elastoplasticity, axially compressed cylinders

Abstract

An elastoplastic thin shell finite element model with finite rotations is presented in this paper in order to compute the post-buckling behaviour of shell-type structures. A generalized arc-length method and appropriate continuation methods have been implemented to deal with both limit and bifurcation points. A particular attention is devoted to cylindrical shells under axial compression producing axisymmetric and diamond modes, but also transition modes corresponding to secondary bifurcating branches.

Downloads

Download data is not yet available.

References

[AFL 88] AFLAK W. F., « Flambage plastique de coques cylindriques sous compression

axiale. Influence des imperfections géométriques et des imperfections de conditions aux

limites », Thèse de doctorat, INSA de Lyon, 1988.

[AMA 72] AMAZIGO J. C., BUDIANSKY B., « Asymptotic formulas for the buckling stresses

of axially compressed cylinders with localized or random axisymmetric imperfections », J.

Applied Mechanics, 1972, p. 179-184.

[ARI 69] ARIARATNAM S. T., DUBEY R. N., « Instability in an elastic-plastic cylindrical

shell under axial compression », J. Applied Mechanics, 1969, p. 47-50.

[BAT 65] BATTERMAN S. C., « Plastic buckling of axially compressed cylindrical shells »,

AIAA Journal, vol. 3, no 2, 1965, p. 316-325.

[BAT 66] BATTERMAN S. C., LEE L. H. N., « Effect of modes on plastic buckling of compressed

cylindrical shells », AIAA Journal, vol. 4, no 12, 1966, p. 2255-2257.

[BAT 68] BATTERMAN S. C., « Free-edge plastic buckling of axially compressed cylindrical

shells », J. Applied Mechanics, 1968, p. 73-79.

[BES 94] BESSELING J. F., VAN DER GIESSEN E., Mathematical modelling of inelastic deformation,

Chapman & Hall, 1994.

[BRA 97] BRANK B., PERIC D., DAMJANIC F. B., « On large deformations of thin elastoplastic

shells : implementation of a finite rotation model for quadrilateral shell element »,

Int. J. Numerical Methods in Engineering, vol. 40, 1997, p. 689-726.

[BUD 72] BUDIANSKY B., HUTCHINSON J. W., « Buckling of circular cylindrical shells under

axial compression », Contributions to the Theory of Aircraft Structures, Delft University

Press, 1972, p. 239-259.

[CAS 80] CASEY J., NAGHDI P. M., « A remark on the use of the decomposition F=FeFp in

plasticity », J. Applied Mechanics, vol. 47, 1980, p. 672-675.

[CRI 83] CRISFIELD M. A., « An arc-length method including line searches and accelerations

», Int. J. Numerical Methods in Engineering, vol. 19, 1983, p. 1269-1289.

[CRI 84] CRISFIELD M. A., « Accelerating and damping the modified Newton-Raphson method

», Computers and Structures, vol. 18, no 3, 1984, p. 395-407.

[DON 76] DONNELL L. H., Beams, plates and shells, Mc Graw-Hill, 1976.

[GIE 89a] VAN DER GIESSEN E., « Continuum models of large deformation plasticity, Part I :

Large deformation plasticity and the concept of a natural reference state », Eur. J. Mech.

A/Solids, vol. 8, 1989, p. 15-34.

[GIE 89b] VAN DER GIESSEN E., « Continuum models of large deformation plasticity, Part

II : A kinematic hardening model and the concept of a plastically induced orientational

structure », Eur. J. Mech. A/Solids, vol. 8, 1989, p. 89-108.

[GOT 99] GOTO Y., ZHANG C., « Plastic buckling transition modes in moderately thick cylindrical

shells », J. Engineering Mechanics, vol. 125, no 4, 1999, p. 426-434.

[GRE 65] GREEN A. E., NAGHDI P. M., « A general theory of an elastic-plastic continuum »,

Archive for Rational Mechanics and Analysis, vol. 18, 1965, p. 251-281.

[GRE 71] GREEN A. E., NAGHDI P. M., « Some remarks on elastic-plastic deformation at

finite strain », Int. J. Engineering Sciences, vol. 9, 1971, p. 1219-1229.

[GUP 00] GUPTA N. K., ABBAS H., « Mathematical modeling of axial crushing of cylindrical

tubes », Thin-Walled Structures, vol. 38, 2000, p. 355-375.

[GUS 00] GUSIC G., COMBESCURE A., JULLIEN J. F., « The influence of circumferential thickness

variations on the buckling of cylindrical shells under external pressure », Computers

and Structures, vol. 74, 2000, p. 461-477.

[HAL 75] HALPHEN B., NGUYEN Q. S., « Sur les matériaux standard généralisés », Journal

de Mécanique, vol. 14, no 1, 1975, p. 39-63.

[HUT 72] HUTCHINSON J. W., « On the post-buckling behaviour of imperfection-sensitive

structures in the plastic range », J. Applied Mechanics, 1972, p. 155-162.

[HUT 74] HUTCHINSON J. W., « Plastic buckling », Advances in Applied Mechanics, vol. 14,

, p. 67-144.

[LAM 92] LAM W. F., MORLEY C. T., « Arc-length method for passing limit points in structural

calculation », J. Structural Engineering, vol. 118, no 1, 1992, p. 169-185.

[LAN 00] LANCASTER E. R., CALLADINE C. R., PALMER S. C., « Paradoxical buckling

behaviour of a thin cylindrical shell under axial compression », Int. J. Mechanical Sciences,

vol. 42, 2000, p. 843-865.

[LEE 67] LEE E. H., LIU D. T., « Finite-strain elastic-plastic theory with application to planewave

analysis », J. Applied Physics, vol. 38, 1967, p. 19-27.

[LEE 69] LEE E. H., « Elastic-plastic deformations at finite strains », J. Applied Mechanics,

vol. 36, 1969, p. 1-6.

[LIM 91] LIMAM A., « Flambage de coques cylindriques sous combinaison de chargements.

Pression interne et compression axiale », Thèse de doctorat, INSA de Lyon, 1991.

[MAN 00] MANDAL P., CALLADINE C. R., « Buckling of thin cylindrical shells under axial

compression », Int. J. Solids Structures, vol. 37, 2000, p. 4509-4525.

[NAG 75] NAGHDI P. M., TRAPP J. A., « Restrictions on constitutive equations for finitely

deformed elastic-plastic materials », Quart. J. Mech. Appl. Math., vol. 28, no 1, 1975,

p. 25-46.

[NAG 90] NAGHDI P. M., « A critical review of the state of finite plasticity », J. Appl. Math.

Phys., vol. 41, 1990, p. 315-394.

[NEM 79] NEMAT-NASSER S., « Decomposition of strain measures and their rates in finite

deformation elastoplasticity », Int. J. Solids Structures, vol. 15, 1979, p. 155-166.

[NEM 82] NEMAT-NASSER S., « On finite deformation elasto-plasticity », Int. J. Solids Structures,

vol. 18, no 10, 1982, p. 857-872.

[NGU 00] NGUYEN Q. S., Stabilité et mécanique non-linéaire, Hermès, 2000.

[PEE 00] PEEK R., « Axisymmetric wrinkling of cylinders with finite strain », J. Engineering

Mechanics, vol. 126, no 5, 2000, p. 455-461.

[RIK 79] RIKS E., « An incremental approach to the solution of snapping and buckling problems

», Int. J. Solids Structures, vol. 15, 1979, p. 524-551.

[RIK 91] RIKS E., « On formulations on path-following techniques for structural stability analysis

», New advances in computational structural mechanics, Elsevier, 1991, p. 65-80.

[SEY 94] SEYDEL R., Practical bifurcation and stability analysis. From equilibrium to chaos,

Springer-Verlag, 1994.

[SIM 86] SIMO J. C., TAYLOR R. L., « A return mapping algorithm for plane stress elastoplasticity

», Int. J. Numerical Methods in Engineering, vol. 22, 1986, p. 649-670.

[SIN 99] SINGACE A. A., « Axial crushing analysis of tubes deforming in the multi-lobe

mode », Int. J. Mechanical Sciences, vol. 41, 1999, p. 865-890.

[TVE 83] TVERGAARD V., « On the transition from a diamond mode to an axisymmetric

mode of collapse in cylindrical shells », Int. J. Solids Structures, vol. 19, no 10, 1983,

p. 845-856.

Downloads

Published

2003-02-12

How to Cite

Grognec, P. L. ., & Van, A. L. . (2003). Bifurcations primaire et secondaires d’un cylindre sous compression axiale. European Journal of Computational Mechanics, 12(1), 7–41. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2509

Issue

Section

Original Article