Modélisation du comportement viscoélastique d’une membrane thermoplastique par la méthode des éléments finis

Authors

  • Fouad Erchiqui Université du Québec en Abitibi-Témiscamingue, DSA 445 boulevard de l’Université, Rouyn-Noranda (Québec), J9X 5E4, Canada
  • Augustin Gakwaya Université Laval, 1314-F Pavillon Adrien-Pouliot Sainte-Foy, Québec, Canada

Keywords:

viscoelasticity, biaxial deformation, finite element, validation, inflation

Abstract

In this work, we are interested in the modelling and numerical simulation using the dynamic finite element method for the viscoelastic behaviour of a thin, isotropic and incompressible thermoplastic membrane. Thereby, the viscoelastic behaviour of the Lodge model is considered. The lagrangian formulation together with the assumption of the membrane theory are used. The numerical validation is performed by comparing the obtained results with the experimental measured data for the polymeric ABS membrane inflation. Moreover, the effect of the Lodge model behaviour on the thickness ad stress distribution in the membrane are analysed for three different loads. Finally, a simple example of thermoforming part in ABS is presented.

Downloads

Download data is not yet available.

References

[DEL 91] DELORENZI H. G., NIED H. F., « Finite element simulation of thermoforming and

blow molding », Progress in polymer processing, Hanser Verlag, 1991, p. 117-171.

[DER 00] DERDOURI A., ERCHIQUI F., BENDADA H., VERRON E., « Viscoelastic behaviour

of polymer membranes under inflation », XIII International Congress on Rheology, Cambridge,

, p. 394-396.

[DEV 77] DEVRIES A. J., BONNEBAT C., BEAUTEPMS J., « Uni and biaxial orientation of

polymer films and sheets », Journal of Polymer Science : Polymer Symposium, vol. 58,

, p. 109-156.

[DHA 84] DHATT G., TOUZOT G., Une présentation de la méthode des éléments finis, Collection

Université de Compiègne, 2 ième édition, 1984.

[DOK 89] DOKAINISH M. A., SUBBARAJ K., « A survey of direct time-integration methods

in computational structural dynamics », Comput. Struct., vol. 32, no 6, 1989, p. 1371-

[ERC 98] ERCHIQUI F., DERDOURI A., LAROCHE D., « Biaxial characterization of softened

polymers », Polymer Processing Society, PPS, Toronto, 17-19 August 1998, p. 115-116.

[FER 80] FERRY J. D., Viscoelastic properties of polymers, Hohn Wily & Sons, 1980.

[JOY 72] JOYE D. D, POEHLEIN G. W., DENSON C. D., « A bubble inflation technique for

the measurement of viscoelastic proprties in equal biaxial extension flow. II », Trans. Soc.

Rheol., no 16, 1972, p. 421-445.

[KHA 92] KHAYAT R. E., DERDOURI A., GARCIA-RÉJON A., « Inflation of hyperelastic

cylindrical membranes as applied to blow molding », International Journal of Solids and

Structures, vol. 29, no 1, 1992, p. 69-87.

[LAP 82] LAPIDUS L., PINDER G. F., Numerical solution of partial differential equations in

science and engineering, John Wiley & Sons, 1982.

[LAR 98] LAROCHE D., ERCHIQUI F., « 3D modelling of the blow moulding process » Simulation

of Materials Processing : Theory, Methods and applications , Huétink & Baaijens

(eds) 1998, Balkema, Rotterdam, ISBN 90 5410 970 X, p. 483-488.

[LAR 00] LAROCHE D., ERCHIQUI F., « Experimental and theoretical study of the thermoformability

of industrial polymers », Journal of Reinforced Plastics and Composites,

vol. 19, no 3, 2000, p. 231-239.

[LI 01] LI Y., NEMES J. A., DERDOURI A., « Membrane Inflation of Polymeric Materials :

Experiments and Finite Element Simulations », Polymer Engineering & Science, vol. 41,

no 8, 2001, p. 1399-1412.

[LOD 64] LODGE A. S., Elastic liquids, Academic Press, London, 1964.

[NOV 99] NOVOTNY P., SAHA P., KOUBA K., « Fitting of K-BKZ model parameters for the

simulation of thermoforming », International Polymer Processing XIV, 1999, p. 291-295.

[RAS 00] RASMUSSEN H. K., CHRISTENSEN J. H., GOTTSCHE S. « Inflation of polymer

melts into elliptic and circular cylinders », Journal of Non-Newtonian Fluid Mechanics,

vol. 93, Issues 2-3, 2000, p. 245-263.

[SCH 75] SCHMIDT L. R., CARLEY J. F., « Biaxial stretching of heat-softened plastic : experiments

and results », Polymer Engineering & Science, vol. 15, no 1, 1975, p. 51-62.

[VER 99] VERRON E., KHAYAT R. E., DERDOURI A. , PESEUX B., « Dynamic inflation of

hyperelastic spherical membranes », Journal of Rheology, vol. 43, no 5, 1999, p. 1083-

[VER 01] VERRON E., MARCKMANN G., PESEUX B., « Dynamic inflation of non-linear

elastic and viscoelastic rubberlike membranes », Int. Journal for Num. Methods in Engineering,

vol. 50, no 5, 2001, p. 1233-1251.

[XIA 01] XIAOPING G., « Kinematic modeling of finite axisymmetric inflation for an arbitrary

of polymeric of membrane inflation », Polym -Plast.Technol.Eng, 2001, p. 341-361.

Downloads

Published

2003-02-14

How to Cite

Erchiqui, F. ., & Gakwaya, A. . (2003). Modélisation du comportement viscoélastique d’une membrane thermoplastique par la méthode des éléments finis. European Journal of Computational Mechanics, 12(1), 43–58. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2511

Issue

Section

Original Article