Optimal design of micro-mechanisms by the homogenization method
Keywords:
micro-mechanisms, shape optimization, homogenizationAbstract
The design of mechanisms for building micro-tools can be viewed as a shape optimization problem with a peculiar objective function. We propose such an optimization method based on homogenization, which is called topology optimization.
Downloads
References
[ALL 01] ALLAIRE G., Shape optimization by the homogenization method, Springer Verlag,
New York 2001.
[ALL 00a] ALLAIRE G., AUBRY S., JOUVE F., “Shape optimization with general objective
functions using partial relaxation”, Topology optimization of structures and composite continua,
G.I.N. Rozvany and N. Olhoff eds., p. 239-249, Kluwer Academic Publishers, 2000.
[ALL 00b] ALLAIRE G., AUBRY S., JOUVE F., “Eigenfrequency optimization in optimal design”,
Comput. Methods Appl. Mech. Engrg., vol. 190, 2000, p. 3565-3579.
[ALL 97] ALLAIRE G., BONNETIER E., FRANCFORT G., JOUVE F., “Shape optimization by
the homogenization method”, Nümerische Mathematik, vol. 76, 1997, p. 27-68.
[ALL 96] ALLAIRE G., BELHACHMI Z., JOUVE F., “The homogenization method for topology
and shape optimization. Single and multiple loads case”, Revue Européenne des Éléments
Finis, vol. 5, 1996, p. 649-672.
[ALL 93] ALLAIRE G., KOHN R.V., “Optimal design for minimum weight and compliance
in plane stress using extremal microstructures”, Europ. J. Mech. A/Solids, vol. 12, num. 6,
, p. 839-878.
[BEN 95] BENDSOE M., Methods for optimization of structural topology, shape and material,
Springer Verlag, New York, 1995.
[BEN 88] BENDSOE M., KIKUCHI N., “Generating Optimal Topologies in Structural Design
Using a Homogenization Method”, Comp. Meth. Appl. Mech. Eng., vol. 71, 1988, p. 197-
[CHE 97] CHERKAEV A., KOHN R.V., Editors, “Topics in the mathematical modeling of
composite materials”, Progress in Nonlinear Differential Equations and their Applications,
vol. 31, Birkhaüser, Boston, 1997.
[DIA 92a] DIAZ A., BENDSOE M., “Shape optimization of structures for multiple loading
conditions using a homogenization method”, Struct. Optim., vol. 4, 1992, p. 17-22.
[DIA 92b] DIAZ A., KIKUCHI N., “Solutions to shape and topology eigenvalue optimization
problems using a homogenization method”, Int. J. Num. Meth. Engng., vol. 35, 1992,
p. 1487-1502.
[JON 99] JONSMANN J., SIGMUND O., BOUWSTRA S., “Compliant thermal microactuators”,
Sensors and actuators, vol. 76, 1999, p. 463-469.
[KOH 86] KOHN R.V., STRANG G., “Optimal Design and Relaxation of Variational Problems
I-II-III”, Comm. Pure Appl. Math., vol. 39, 1986, p. 113-137, 139-182, 353-377.
[LUR 86] LURIE K., CHERKAEV A., “Effective characteristics of composite materials and the
optimal design of structural elements”, Uspekhi Mekhaniki, vol. 9, 1986, p. 3-81. English
translation in [CHE 97].
[MIN 98] MINOTTI P., BOURBON G., LANGLET P., MASUZAWA T., “Arrayed electrostatic
scratch drive actuators: towards visible effects up to the human scale”, J. of Intelligent
Material Systems and Structures, vol. 9, 1998, p. 837-846.
[MUR 85] MURAT F., TARTAR L., “Calcul des Variations et Homogénéisation”, in D.
Bergman et. al. (eds.), Les Méthodes de l’Homogénéisation Théorie et Applications en
Physique, Coll. Dir. Etudes et Recherches EDF, vol. 57, 1985, Eyrolles, Paris, p. 319-
English translation in [CHE 97].
[ROZ 95] ROZVANY G., BENDSOE M., KIRSCH U., “Layout optimization of structures”,
Appl. Mech. Reviews, vol. 48, 1995, p. 41-118.
[SIG 97] SIGMUND O., “On the design of compliant mechanisms using topology optimization”,
Mech. Struct. Mach., vol. 25, 1997, p. 493-524.
[SIG 99] SIGMUND O., “Design of multiphysics actuators using topology optimization, part I:
one-material structures”, DCAMM Report 632, Technical University of Denmark, 2000