The homogenization method for topology and shape optimization. Single and multiple loads case
Keywords:
optimal design, homogenization, shape optimization, topology optimization, sequential laminatesAbstract
This paper is devoted to an elementary introduction to the homogenization methods applied to topology and shape optimization of elastic structures under single and multiple external loads. The single load case, in the context of minimum compliance and weight design of elastic structures, has been fully described in its theoretical as well as its numerical aspects in [4]. It is here briefly recalled. In the more realistic context of "multiple loads", i.e. when the structure is optimized with respect to more than one set of external forces, most of the obtained theoretical results remain true. However, the parameters that define optimal composite materials cannot be computed explicity. In this paper, a method to treat numerically the multiple loads case is proposed.
Downloads
References
W. Achtziger, M. Bendsoe, A. Ben-Tal, J. Zowe, Equivalent displacement
based formulations for maximum strength truss topology design, IMPACT
of Computing in Science and Engineering, 4, pp.315-345 (1992).
G. Allaire, Explicit lamination parameters for three-dimensional shape optimization,
Control and Cybernetics 23, pp.309-326 (1994).
G. Allaire, Relaxation of structural optimization problems by homogenization,
"Trends in Applications of Mathematics to Mechanics",
M.M.Marques and J.F.Rodrigues Eds., Pitman monographs and surveys
in pure and applied mathematics 77, pp.237-251, Longman, Harlow (1995).
G. Allaire, E. Bonnetier, G. Francfort, F. Jouve, Shape optimization by
the homogenization method, to appear in Numerische Mathematik.
G. Allaire, G. Francfort, A numerical algorithm for topology and shape
optimization, In "Topology design of structures" Nato ASI Series E, M.
Bendsoe et al. eds., 239-248, Kluwer, Dordrecht (1993).
G. Allaire, R.V. Kohn, Optimal bounds on the effective behavior of a mixture
of two well-ordered elastic materials, Quat. Appl. Math. 51, 643-674
(1993).
G. Allaire, R.V. Kohn, Optimal design for minimum weight and compliance
in plane stress using extremal microstructures, Europ. J. Mech.
A/Solids 12, 6, 839-878 (1993).
M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase
composites, SIAM J. Appl. Math. 47, 6, 1216-1228 (1987).
M. Avellaneda, G. Milton, Bounds on the effective elasticity tensor of
composites based on two point correlations, in Proceedings of the ASME
Energy Technology Conference and Exposition, Houston, 1989, D. Hui et
al. eds., ASME Press, New York (1989).
M. Bendsoe, Methods for optimization of structural topology, shape and
material, Springer Verlag (1995).
M. Bendsoe, A. Diaz, N. Kikuchi, Topology and generalized layout optimization
of structures, In "Topology Optimization of Structures" Nato ASI
Series E, M. Bendsoe et al. eds., pp.159-205, Kluwer, Dordrecht (1993).
M. Bendsoe, N. Kikuchi, Generating Optimal Topologies in Structural Design
Using a Homogenization Method, Comp. Meth. Appl. Mech. Eng. 71,
-224 (1988).
F. Brezzi, M. Fortin, Mixed and hybrid Finite Element Methods, Springer,
Berlin, 1991.
G. Cheng, N. Olhoff, An investigation concerning optimal design of solid
elastic plates, Int. J. Solids Struct. 16, pp.305-323 (1981).
R. Christensen, Mechanics of Composite Materials, Wiley-Interscience,
New York (1979).
H. Eschenauer, V. Kobelev, A. Schumacher, Bubble method of topology
and shape optimization of structures, Struct. Optim. 8, pp.42-51 (1994).
G. Francfort, F. Murat, Homogenization and Optimal Bounds in Linear
Elasticity, Arch. Rat. Mech. Anal. 94, 307-334 (1986).
G. Francfort, F. Murat, L. Tartar, Fourth Order Moments of a NonNegative
Measure on S2 and Application, to appear in Arch. Rat. Mech.
Anal. (1995).
Y. Grabovsky, R. Kohn, Microstructures minimizing the energy of a twophase
elastic composite in two space dimensions II: the Vigdergauz microstructure,
to appear.
V. Hammer, M. Bendsoe, R, Lipton, P. Pedersen, Parametrization in laminate
design for optimal compliance, preprint (1996).
Z. Hashin, The elastic moduli of heterogeneous materials, J. Appl. Mech.
, 143-150 (1963).
Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic
behavior of multiphase materials, J. Mech. Phys. Solids 11, 127-140 (1963).
C. Jog, R. Haber, M. Bendsoe, Topology design with optimized, selfadaptative
materials, Int. Journal for Numerical Methods in Engineering
, 1323-1350 (1994).
U. Kirsch, Optimal topologies of truss structures, Comp. Meth. Engrg. 72,
pp.15-28 (1989).
R. Kohn, G. Strang, Optimal Design and Relaxation of Variational Problems
I-II-III, Comm. Pure Appl. Math. 39, 113-182,353-377 (1986).
R. Lipton, On optimal reinforcement of plates and choice of design parameters,
Control and Cybernetics 23, pp.481-493 (1994).
K. Lurie, A. Cherkaev, A. Fedorov, Regularization of Optimal Design Problems
for Bars and Plates I,II, J. Optim. Th. Appl. 37, pp.499-521, 523-543
(1982).
A. Michell, The limits of economy of material in frame-structures, Phil.
Mag. 8, 589-M)7 (1904).
G. Milton, On characterizing the set of possible effective tensors of composites:
the variationnal method and the translation method, Comm. Pure
Appl. Math. 43, 63-125, (1990).
F. Murat, Contre-exemples pour divers probemes ou le controle intervient
dans les coefficients, Ann. Mat. Pura Appl. 112, 49-68 (1977).
F. Murat, L. Tartar, Calcul des variations et homogeneisation, in Les
methodes de 1 'homogeneisation : theorie et applications en physique, CoiL
de la Dir. des Etudes et Recherches EDF, pp.319-370, Eyrolles, Paris
(1985).
N. Olhoff, M. Bendsoe, J. Rasmussen, On CAD-integrated structural
topology and design optimization, Comp. Meth. Appl. Mechs. Engng. 89,
pp.259-279 (1992).
0. Pironneau, Optimal shape design for elliptic systems, Springer Verlag,
Berlin (1984).
W. Prager, G. Rozvany, Optimal layout of grillages, J. Struct. Mech. 5,
-18 (1977).
G. Rozvany, M. Bendsoe, U. Kirsch, Layout optimization of structures,
Applied Mechanical reviews 48, 2, pp.41-118 (1995).
K. Suzuki, N. Kikuchi, A homogenization method for shape and topology
optimization, Comp. Meth. Appl. Mech. Eng. 93, 291-318 (1991).
L. Tartar, Estimations Fines des Coefficients Homogeneises, Ennio de
Giorgi colloquium, P. Kree ed., Pitman Research Notes in Math. 125,
-187 (1985).
S. Vigdergauz, Effective elastic parameters of a plate with a regular system
of equal-strength holes, Mech. Solids 21, 162-166 (1986).
M. Zhou, G. Rozvany, The COG algorithm, Part II: Topological, geometrical
and generalized shape optimization, Comp. Meth. App. Mech. Engrg.
, 309-336 (1991).