Sorne aspects of a gradient damage formulation

Authors

  • Tina Liebe Chair for Applied Mechanics, Department of Mechanical Engineering, University of Kaiserslautern, PO. Box 3049, D-67653 Kaiserslautern, Germany
  • Paul Steinmann Chair for Applied Mechanics, Department of Mechanical Engineering, University of Kaiserslautern, PO. Box 3049, D-67653 Kaiserslautern, Germany
  • Ahmed Benallal Laboratoire de Mecanique et Technologie, LMT-Cachan, 61 avenue du Président- Wilson, F-94235 Cachan Cedex, France

Keywords:

Continuum Damage Mechanics, Gradient Regularizarion, Finite Element Method

Abstract

The paper discusses some theoretical and mmzerical aspects of a gradient damage formulation. Thereby, the main motivation is provided by localization computations whereby classical local continuum fomzulations fait ta produce physically meaningful and numerically com·erging results. Therefore, we propose a fomzulation in tem1s of the Helmholtzfree energy incorporating the gradient of the damage field, a dissipation potential and the postulate of max· imum dissipation. As a result the driving force conjugated ta damage evolution incorporates besides the strictl_v local energy release rate essentially the divergence of a vectorial damage jlzLL At the numerical side, besides balance of linear momentum, the algorithmic consistency condition has ta be solved in weakfonn.

Downloads

Download data is not yet available.

References

[BEN 93) BENALLAL, A., BILLARDON, R. AND GEYMONAT, G. «Bifurcation and

localization in rate-independent materials: sorne general considereations». In

CISM Lecture Notes N° 327, pages 1-44. Springer-Verlag, 1993.

[BEN 95) BENALLAL, A. AND TVERGAARD, V. «Nonlocal continuum effects on

bifurcation in the plane strain tension-compression test». J. Mech. Phys. Solids,

:741-770, 1995.

[BOR 96a) DE BORST, R., BENALLAL, A. AND HEERES, 0. «A gradient-enhanced

damage approach to fracture>>. J. Phys. IV, 6:491-502, 1996.

[BOR 96b) DE BORST, R. AND PAMIN, J. <

procedures for gradient-dependent plasticitiy and finite elements>>. /nt. J.

Num. Meth. Eng., 39:2477-2505, 1996.

[COM 96] COMI, C. <>.

Rend. Sc. /stituto Lombardo, A 130:119-141,1996.

[COM 99) COMI, C. <

quasi-brittle materials>>. Mech. Cohes.-Frict. Mater., 4:17-36, 1999.

REEF-10/2001. NUMEDAM'OO

(FLO 94] FLOREZ-LOPEZ, 1., BENALLAL, A., GEYMONAT, G. AND BILLARDON,

R. «A two-field finite element formulation for elasticity coupled to damage».

Comp. Meth. Appt. Mech. Eng., 114:193-212,1994.

[LIE 0 1] LIEBE, T. AND STEIN MANN, P. «Theory and numerics of a thermodynamically

consistent framework for geometrically linear gradient plasticity>>. /nt. 1.

Num. Meth. Eng., in press 2001.

[MEN 00] MENZEL, A. AND STEINMANN, P. «Ün the continuum formulation of

higher gradient plasticity for single and polycrystals>>. 1. Mech. Phys. Solids,

:1777-1796, 2000.

[PAM 94] PAMIN, J. «Gradient-dependent plasticity in numerical simulation of localization

phenomena>>. Diss., Delft University of Technology, 1994.

[PEE 96] PEERLINGS, R., DE BORST, R., BREKELMANS, W. AND DE VREE, J.

«Gradient enhanced damage for quasi-brittle materials>>. /nt. 1. Num. Meth. Eng.,

:3391-3403, 1996.

[POL 98] POLIZZOTTO, C. AND BORINO, G. «A thermodynamics-based formulation

of gradient-dependent plasticity>>. Eur. 1. Mech. A/Solids, 17:741-761, 1998.

[SLU 93] SLUYS, L., DE BORST, R. AND MUEHLHAUS, H. «Wave propagation, localization

and dispersion in a gradient-dependent medium>>. /nt. 1. Solids Struct.,

:1153-1171,1993.

[STE 96] STEINMANN, P. «Views on multiplicative elastoplasticity and the continuum

theory of dislocations>>. /nt. 1. Eng. Sei., 34:1717-1735, 1996.

[STE 99] STEINMANN, P. «Formulation and computation of geometrically nonlinear

gradient damage>>. /nt. 1. Num. Meth. Eng., 46:757-779, 1999.

Downloads

Published

2001-08-12

How to Cite

Liebe, T., Steinmann, P. ., & Benallal, A. . (2001). Sorne aspects of a gradient damage formulation. European Journal of Computational Mechanics, 10(2-4), 157–172. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2709

Issue

Section

Original Article