On a mixed finite element formulation involving large rotations for geometrically nonlinear elasticity
Keywords:
mixed finite element formulation, complementary energy functional, large strains, large rotationsAbstract
A geometrically nonlinear extension of a mixed finite element formulation based on a complementary energy functional involving rotations and nonsymetric stresses is investigated. The resulting nonlinear strain measure involves an independent rotation tensor and resembles a micropolar approach. As a point of departure, the hybrid mixed functional is derived and the stationarity conditions together with their linearization are given with respect to the reference and the spatial configuration. A possible application of well balanced approximation spaces to the geometrically nonlinear case is discussed.
Downloads
References
[ATH79] AMARA M. & J.M. THOMAS, [1979], "Equilibrium Finite Elements
for the Linear Elastic Problem", Numer. Math, Vol. 33, pp. 367-383.
[ABD84] ARNOLD D.N., F. BREZZI & .J. DoUGLAS, [1984], "PEERS: A New
Mixed Finite Element for Plane Elasticity", Japan J. Appl. Math,
Vol. 1, pp. 347-367.
[BDM85] BREZZI F., J. DoUGLAS & L.D. MARINI, [1985], "Two Families of
Mixed Finite Elements for Second Order Elliptic Problems", Numer.
Math., Vol. 47, pp. 217-235.
[BKW95] BRAESS D., 0. KLAAS, R. NIEKAMP, E. STEIN & F. WOBSCHAL,
, "Error Indicators for Mixed Finite Elements in 2-Dimensional
Linear Elasticity", Camp. Meth. Appl. Mech. Engr., submitted.
[BCS95] BRINK U., C. CARSTENSEN & E. STEIN, (1995], "Symmetric Coupling
of Boundary Elements and Raviart-Thomas-Type Mixed Finite
Elements in Elastostatics", submitted
[BKS95] BRINK U., 0. KLAAS, R. NIEKAMP & E. STEIN, [1995], "Coupling
of Adapt.ively Refined Dual Mixed Finite Elements and Boundary
Elements iu Linear Elasticity", submitted
[FDV72] FRAEIJS DE VEUBEUKE B., [1972], "A New Variational Principle for
Finite Elastic Displacements", Int. J. Engng. Sci., Vol. 10., pp.745-
[FDV75] FRAEIJS DE VEUBEUKE B., [1975], "Stress Function Approach", in
Proc. 1. World Congress on F-inite Element Method, pp. 1-51, Robinson
& Associates, England.
[ITW90] IBRAHIMBEGOVIC A., R.L. TAYLOR & E.L. WILSON, (1990], "A
Robust Membrane Quadrilateral Element with Drilling Degrees of
Freedom", Int. J. Num. Meth. Eng., Vol. 30, pp. 445-457.
[IBR93] IBRAHIMBEGOVIC A., [199:1], "Mixed Finite Element with Drilling
Rotations for Plane Problems in Elasticity", Camp. M eth. Appl.
Mech. Eng., Vol. 107, pp. 225-238.
[IBF93] lBRAHIMBEGOVIC A. & F. FREY, (1993], "Geometrically Nonlinear
Method of Incompatible Modes in Application to Finite Elasticity
with Independent Rotations", Int. J. Num. Meth. Eng., Vol. 36, pp.
-4200.
[KSS95] KLAAS 0., J. SCIIRODER, E. STEIN & C. MIEIIE, [1995], "A Regularized
Dual Mixed Element for Plane Elasticity - Implementation
and Performance of the BDM-Element", Camp. Meth. Appl. Mech.
Eng., Vol. 121, pp. 201-209.
[OGD84] OGDEN R.W., [1984], Non-Linear Elastic Deformations, Ellis Horwood,
Chichester.
[RTH77] RAVIART P.A. & J.M. THOMAS, [1977], "A Mixed Finite Element
Method for 2nd Order Elliptic Problems", in Mathematical Aspects of
the Finite Element Method, Eels. I. Galligani & E. Magenes, Lecture
Notes in Math. 606, pp. 292
[STR90] STEIN E. & R. RoLFES, [1990], "Mechanical Conditions for Stability
and Optimal Convergence of Mixed Elements for Linear Plane
Elasticity", Camp. Meth. Appl. Mech. Eng., Vol. 84, pp. 77-95.
[STE94] STEINMANN P., [1994], "A Micropolar Theory of Finite Deformation
and Finite Rotation Multiplicative Elastoplasticity", Int. ]. Solids
Str-uctures, Vol 31, pp. 1063-1084.
[STE88] STENBERG R .. , [1988], "A Family of Mixed Finite Elements for the
Elasticity Problem", Numer. Math., Vol. 5:), pp. 513-538.