Un modele de gauchissement pour les plaques piezo-electriques
Keywords:
Piezoelectric, Composite, Plates, WarpingAbstract
A warping theory for the piezoelectric composite plates is presented using a previously developed model for laminated composite plates. The warping theory takes into account the effects of non linear distribution of the displacements through the thickness and also the transverse shear deformation. The results from the present theory are compared to the low-order theory of Mindlin and exact solutions available in the literature. Examples of a one layer and two layer composite plates were presented to illustrate the thickness effects on displacements, stresses and electric potential. The results obtained indicate that warping theory gives more realistic predictions as compared to lower order theories of piezoelectric composite plates.
Downloads
References
[EER 67] EER NISSE E.P., «Resonances of One-Dimensional Composite Piezoeiectrical
and Elastic Structures», IEEE Transactions on Sonics and Ultrasonics, Vol. SU-14
No 2, 59-67, 1967.
[HAS 98] HASSIS H., A warping Theory of Plate Deformation, European Journal of
Mechanics A/Solids, Vol. 17, issue 5, p. 843-853, 1998.
[HAS 99-a] HAssiS H., Un modele de gauchissement des coques, Revue Europeenne des
ELements Finis, Vol. 8 N 1 p. 77-100, 1999.
[HAS 99-b] HAssiS H., «A high-order Model for Laminated Plates using a Warping
Model», (presented to JSV).
[HEY 94-a) HEYUGER P. RAMIRES P.R. and SARAVANOS D.A., «Coupled Discrete-layer
Finite Elements for Laminated Piezoelectric Plates», Communication in Numerical
Methods in Engineering, Vol. 10 No. 12, p. 971-981, 1994.
[HEY 94-b] HEYUGER P., «Static behavior of Laminated Elastic/Piezoelectric Plates »,
AIAA Journal, Vol. 32 No. 12, p. 2481-2481, 1994.
[LAM 91] LAMERING R., «Application of a Finite Shell Element for Composite
Containing Piezoelectric Polymers in Vibration Control », Computer and Structure,
Vol 41 No 5, p. 1101-1109, 1991.
[LO 77-a] Lo K. H., CHRISTENSEN R. M. and Wu E. M., «A High Order Theory of Plate
Deformation. Part 1: Laminated Plates», J. Applied Mechanics, 44, p. 663-676,
[LO 77-b] Lo K. H., CHRISTENSEN R. M. and Wu E. M., «A High Order Theory of Plate
Deformation. Part 2:??? », J. Applied Mechanics 44, p. ?, 1977.
[PAG 69] PAGANO N.J., « Exact solutions for composite laminates in cylindrical
bending», J. Comp. Mats 3, p. 398-411, 1969.
[RUA 99] RUAN X., DANFORTIII S. C., Safari A. and Chou T.W., «A theoritical study of
the coupling effects in piezoelectric ceramics», International Journal of Solids and
Structures 36, p. 465-487, 1999.
[TIER 69] TIERSTON H.F., Linear Piezoelectrical Plate Vibrations, Plenum, 1969.
[TSO 89] Tsou H.S. and GADRE M., « Theoritical Analysis of a Multi-Layered Thin Shell
Coupled with Piezoelectric Shell Actuators for Distributed Vibration Controls »,
Journal of Sound and Vibration, Vol. 132 No 3, p. 433-450, 1989.
[TSO 93] Tsou H.S., Piezoelectric Shells Distributed Sensing and Control of Continua,
Klumer Academic Publishers, 1993.