Un modele de gauchissement des coques
Keywords:
warping, normal modes of normal fibre, deformation modesAbstract
The warping high-order theory of plate deformation developed in [HAS 98] is extended here to shells. A theory of shell deformation is derived which accounts for the effects of transverse shear deformation and a non linear distribution of the insurface displacements with respect to the thickness coordinate. This theory uses the normal modes associated to the normal fibre (considered such as a geometrical beam) as basis functions. Using only the rigid body modes, we find the classical theory and using the deformation normal modes, a high order theory is constructed. Our theory is compared with other theory and the exact solution through application to a particular problem of shells.
Downloads
References
[BOL 47] BOLLE E., Contribution au probleme Iineaire de flexion d'une plaque elastique,
Bulletin Technique de Ia Suisse romande, Vol. 73 p. 281-285 et p. 293-298, 1947.
[DES 86] DESTUYNDER PH., Une thiorie asymptotique des plaques minces en elasticite
/ineaire, Masson, 1986.
[DES 90] DESTUYNDER PH., Mode/isation des coques minces elastiques, Masson, 1990.
[ESS 75] EsSENBERG F.,« On the significance ofthe Inclusion of the Effects of Transverse
Normal Strain in Problems Involving Beams With Surface Constrains )), J. Applied
Mechanics, Vol. 42 N° 1, p. 127-132, 1975.
[GIB 88] GIBERT R. J., Vibration des structures, Eyrolles, 1988.
[HAS 98] HASSIS H., « A warping Theory of Plate Deformation », European Journal of
Mechanics, Vol. 17 W5 p. 843-853, 1998.
[KIR 1850] KlRCHHHOFF G., Uber das Gleichgewicht und die Bewegung einer
elastischen Scheibe, J. Reine Angew Math 40, p. 51-58, 1850.
[LO 77a] Lo K. H., CHRISTENSEN R M, and WU E. M, « A High Order Theory of Plate
Deformation», Part 1 : Homogeneous Plates, J. Applied Mechanics, Vol. n° 44,
p. 663-676, 1977.
[LO 77 b] Lo K. H., CHRISTENSEN R M, and Wu E. M., « A High Order Theory of Plate
Deformation», Part 2 : Laminated Plates, J. Applied Mechanics, Vol. n° 44,
p. 663-676, 1977.
[LOV 47] LOVE AEH., A treatise on the mathematical theory of elasticity, Cambridge
Univ. Press, Cambridge 1934.
[MIN 51] MINDLIN R. D., « Influence of rotatory inertia and shear on flexural motions of
isotropic elastic plates», J. Appl. Mech. 18, p. 31-38, 1951.
[NAG 57] NAGHDI P.M, « On the theory of thin Elastic shells Quarterly of Applied
Mathematics», Vol. 14 p. 369-380. J. Applied Mechanics, Vol. 44, p. 663-676, 1957.
[NEL 74] NELSON R. B. and LORCH D. R., « A Raffined Theory of Laminated Orthotropic
Plates », J. Applied Mechanics Vol. 41 N°l Trans. ASME Vol. 96 Series E, March
, p. 177-183, 1974.
[REI 44] REISSNER E.,« On the Theory of Bending of Elastic Plates», J. of Mathematics
and Physics, Vol. 23, p. 184-191, 1944.
[REI 45] REISSNER E.,« The effects of transverse shear deformation on Bending of Elastic
Plates», J of Applied Mechanics, Vol. 12, N° 2 p 69-77, 1945.
[REI 75] REISSNER E., « On Transverse Bending of Plates including the Effects of
Transverse shear deformation», International J. of Solids and Structures, Vol. 11,
p. 569-573, 1975.
[REI 85] REISSNER E., « Reflections on the Theory of Elastic Plates », Applied
Mechanics Rev., Vol. 38, N° II p. 1453-1464, 1985.