Un modele de gauchissement des coques

Authors

  • Hedi Hassis Laboratoire de Modelisation et Calcul des Structures Ecole Nationale d'Ingenieurs de Tunis B.P 37 Le Belvedere 1002 Tunis Tunisie.

Keywords:

warping, normal modes of normal fibre, deformation modes

Abstract

The warping high-order theory of plate deformation developed in [HAS 98] is extended here to shells. A theory of shell deformation is derived which accounts for the effects of transverse shear deformation and a non linear distribution of the insurface displacements with respect to the thickness coordinate. This theory uses the normal modes associated to the normal fibre (considered such as a geometrical beam) as basis functions. Using only the rigid body modes, we find the classical theory and using the deformation normal modes, a high order theory is constructed. Our theory is compared with other theory and the exact solution through application to a particular problem of shells.

Downloads

Download data is not yet available.

References

[BOL 47] BOLLE E., Contribution au probleme Iineaire de flexion d'une plaque elastique,

Bulletin Technique de Ia Suisse romande, Vol. 73 p. 281-285 et p. 293-298, 1947.

[DES 86] DESTUYNDER PH., Une thiorie asymptotique des plaques minces en elasticite

/ineaire, Masson, 1986.

[DES 90] DESTUYNDER PH., Mode/isation des coques minces elastiques, Masson, 1990.

[ESS 75] EsSENBERG F.,« On the significance ofthe Inclusion of the Effects of Transverse

Normal Strain in Problems Involving Beams With Surface Constrains )), J. Applied

Mechanics, Vol. 42 N° 1, p. 127-132, 1975.

[GIB 88] GIBERT R. J., Vibration des structures, Eyrolles, 1988.

[HAS 98] HASSIS H., « A warping Theory of Plate Deformation », European Journal of

Mechanics, Vol. 17 W5 p. 843-853, 1998.

[KIR 1850] KlRCHHHOFF G., Uber das Gleichgewicht und die Bewegung einer

elastischen Scheibe, J. Reine Angew Math 40, p. 51-58, 1850.

[LO 77a] Lo K. H., CHRISTENSEN R M, and WU E. M, « A High Order Theory of Plate

Deformation», Part 1 : Homogeneous Plates, J. Applied Mechanics, Vol. n° 44,

p. 663-676, 1977.

[LO 77 b] Lo K. H., CHRISTENSEN R M, and Wu E. M., « A High Order Theory of Plate

Deformation», Part 2 : Laminated Plates, J. Applied Mechanics, Vol. n° 44,

p. 663-676, 1977.

[LOV 47] LOVE AEH., A treatise on the mathematical theory of elasticity, Cambridge

Univ. Press, Cambridge 1934.

[MIN 51] MINDLIN R. D., « Influence of rotatory inertia and shear on flexural motions of

isotropic elastic plates», J. Appl. Mech. 18, p. 31-38, 1951.

[NAG 57] NAGHDI P.M, « On the theory of thin Elastic shells Quarterly of Applied

Mathematics», Vol. 14 p. 369-380. J. Applied Mechanics, Vol. 44, p. 663-676, 1957.

[NEL 74] NELSON R. B. and LORCH D. R., « A Raffined Theory of Laminated Orthotropic

Plates », J. Applied Mechanics Vol. 41 N°l Trans. ASME Vol. 96 Series E, March

, p. 177-183, 1974.

[REI 44] REISSNER E.,« On the Theory of Bending of Elastic Plates», J. of Mathematics

and Physics, Vol. 23, p. 184-191, 1944.

[REI 45] REISSNER E.,« The effects of transverse shear deformation on Bending of Elastic

Plates», J of Applied Mechanics, Vol. 12, N° 2 p 69-77, 1945.

[REI 75] REISSNER E., « On Transverse Bending of Plates including the Effects of

Transverse shear deformation», International J. of Solids and Structures, Vol. 11,

p. 569-573, 1975.

[REI 85] REISSNER E., « Reflections on the Theory of Elastic Plates », Applied

Mechanics Rev., Vol. 38, N° II p. 1453-1464, 1985.

Downloads

Published

1999-01-31

How to Cite

Hassis, H. . (1999). Un modele de gauchissement des coques. European Journal of Computational Mechanics, 8(1), 77–100. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3041

Issue

Section

Original Article