Fluid-Structure Interaction: A Theoretical Point of View
Keywords:
existence results, Navier-Stokes, rigid bodies, elasticity, fluid-structure interactions, time discretisation, space discretisationAbstract
This paper deals with the mathematical and numerical analysis of fluid-structure interaction phenomena, and present some of the existence results that can be found on this subject. We explain the various approaches and review the technical tools required. In all cases we have a fluid interacting with a moving (rigid or deformable) structure. The fluid is supposed to be viscous (compressible or incompressible) and the fluid equations are set in an unknown, time dependent domain, determined by the structure deformations, itselves resulting from a stress applied by the fluid.
Downloads
References
[ALL 83] G. ALLAIN, Un probleme de Navier-Stokes avec surface libre, These de troisieme
cycle de l'Universite Paris VI, 1983.
[ALL 87] G. ALLAIN, « Small-time Existence for the Navier-Stokes Equations with a Free
Surface», Appl. Math. Optim., 16, n° 1, 1987.
[BAR 94] C.BARDOS and 0. PIRONNEAU, «Petites perturbations et equations d'Euler pour
I' aeroelasticite >>, M2 AN, vol 28, 4, 1994.
[BEA 81] J.T. BEALE,« The Initial Value Problem for the Navier-Stokes Equation with a Free
Surface>>, Comm. on Pure and Applied Mathematics, vol XXXIV, 1981.
[BER 94] M. BERNADOU, Methodes d'etements finis pour les problemes de coques minces,
RMA, Masson, 1994.
[BE 90] C. BERNARDI, Y. MADAY and A. PATERA,« A New Non Conforming Approach to
Domain Decomposition: the Motar Element Method>>, College de France Seminar, Pitman,
H. Brezis, J.L. Lions, 1990.
[BRE 83] H. BREZIS, Analyse Fonctionnelle, Masson, Paris, 1983.
[BRU 97] C.H. BRUNEAU,« Calcul d'ecoulements incompressibles derriere des obstacles et
analyse des solutions transitoires >>, Actes du congres d'Analyse Numerique, 1997.
[CHA 96] Y. C. CHANG, T. Y. HOU, B. MERRIMAN and S. OSHER,« A Level Set Formulation
of Eulerian Interface Capturing Methods for Incompressible Fluid Flow >>, J. of Camp.
Phys., 124, 1996.
[CIA 78] P.O. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland,
Amsterdam, New York NY, Oxford, 1978.
[CIA 86] P.O. CIARLET, Elasticite tridimensionnelle, Masson, Paris, 1986.
[CIA 90] P.O. CIARLET, Plates and Junctions in Elastic Multi-Structures, RMA, Masson,
Paris, 1990.
[CON 99] C. CONCA, J. SAN MARTIN and M. TUCSNAK, <
Problem>>, C. R. Acad. Sci. Paris Ser. I Math., 328, 1999.
[DES 99] B. DESJARDINS, M.J. ESTEBAN, << Existence of Weak Solutions for the Motion of
Rigid Bodies in a Viscous Fluid>>, Arch. in Rat. Mech. Anal., 146, 1999.
[DES OOa] B. DESJARDINS and M.J.ESTEBAN, <
Interaction: Compressible and Incompressible Models >>, to appear in Comm. Part. Diff. Eq.
[DES 00b] B. DESJARDINS, M.J.ESTEBAN, C. GRANDMONT and P. LE TALLEC,<< Weak Solutions
for a Fluid-Elastic Structure Interaction Model>>, submitted.
[DES 86] P. DESTUYNDER, Une theorie asymptotique des plaques minces en elasticite
lineaire, RMA, Masson, 1986.
[DIP 89] R. J. DIPERNA and J. L. LIONS,<< Ordinary Differential Equations, Transport Theory
and Sobolev Spaces>>, Invent. Math., 98, 1989.
[DOE 82] J. DONEA, <
Fluid-Structure Interactions>>, Camp. Methods in Appl. Mech. and Eng., 33, 1982.
[DUV 90] G. DUVAUT, Mecanique des milieux continus, Masson, Paris, Milan, Barcelone,
Mexico, 1990.
[ERR 94] D. ERRATE, M. ESTEBAN andY. MADAY,<< Couplage fluide structure, un modele
simplifie >>,C. R. Acad. Sci. Paris Ser. I Math., 318, 1994.
[FAN 00] T. FANION, M. FERNANDEZ and P. Le Tallec, << Deriving Adequate Formulations
for Fluid-Structure Interactions Problems: from ALE to Transpiration >>, Rev. Europeenne
Etem. Finis, 2000.
[FAR 98] C. FARHAT, M. LESOINNE and P. LE TALLEC,<< Load and Motion Transfert Algorithms
for Fluid/Structure Interaction Problems with Non-Matching Discrete Interfaces:
Momentum and Energy Conservation, Optimal Discretization and Application to Aeroelasticity
>>,Camp. Methods in Appl. Mech. and Eng., 157, 1998.
[FLO 99] F. FLORI and P. ORENGA, « On a Nonlinear Fluid-Structure Interaction Problem
defined on a Domain Depending on Time>>, Non linear Analysis, 38, 1999.
[FLO 00] F. FLORI and P. ORENGA,« Fluid-Structure Interaction: Analysis of a 3D Compressible
Model>>, To appear in les Annates de L'IHP, 2000.
[FUJ 70] H. FUJITA and N. SAUER, «On Existence of Weak Solutions of the Navier Stokes
Equations in Regions with Moving Boundaries>>, J. Fac. Sci. Univ. Tokyo, 17, 1970.
[GLO 97] R. GLOWINSKI, B. MAURY, «Fluid-particle Flow: a Symmetric Formulation>>, C.
R. Acad. Sci. Paris Ser. I Math. t. 324, 1997.
[GLO 94a] R. GLOWINSKI, T-W. PAN and J. PERIAUX, «A Fictitious Domain Method for
Dirichlet Problem and Applications>>, Comp. Methods in Appl. Mech. and Eng. 111, 1994.
[GLO 94b] R. GLOWINSKI, T-W. PAN andJ. PERIAUX, «A Fictitious Domain Method for External
Incompressible Viscous Flow Modeled by Navier-Stokes Equations >>, Comp. Methods
inAppl. Mech. and Eng. 112, 1994.
[GRA 98a] C. GRANDMONT andY. MADAY, «Nonconforming Grids for the Simulation of
Fluid-Structure Interaction. Domain Decomposition Methods >>, 10 (Boulder, CO, 1997),
-270, Contemp. Math., 218, Amer. Math. Soc., Providence, Rl, 1998.
[GRA 98b] C. GRANDMONT, V. OUIMET andY. MADAY,<< Results about some Decoupling
Techniques for the Approximation of the Unsteady Fluid-Structure Interaction >>, Enumath97
Proceedings, published by World Scientific in Singapore, Oct. 1998.
[GRA 98c] C. GRANDMONT and Y. MADAY, << Analyse et methodes numeriques pour
Ia simulation de phenomenes d'interaction fluide-structure », ESAIM: Proceedings,
http://www.emath.fr/proc!Vol.31, Vol. 3, 1998, 101-117.
[GRA OOa] C. GRANDMONT, << Existence for a Three-dimensional Steady State FluidStructure
Interaction Problem >>, Preprint,
[GRA OOb] C. GRANDMONT andY. MADAY,<< Existence for a 3D Fluid-Structure Interaction
Problem >>, M2AN Math. Model. Numer. Anal. , Vol 34, 2000.
[GRA OOc] C. GRANDMONT, Y. MADAY and P. METIER,<< Existence de solutions regulieres
d'un probleme de couplage fluide structure instationnaire >>, Submitted. to C. R. Acad. Sci.
Paris, 2000.
[HOF 99] K. H. HOFFMANN and V. N. STAROVOITOV, << On a Motion of a Solid Body in a
Viscous Fluid. Two Dimensional Case>>, Adv. Math. Sci. Appl., 9, 1999.
[HUG 81] T.J.R. HUGHES, W. LIU, T.K. ZIMMERMAN,<< Lagrangian-Eulerian Finite Element
Formulation for Incompressible Viscous Flows>>, Camp. Methods in Appl. Mech. and Eng.,
, 1981.
[INO 77] A. INOUE and M. WAKIMOTO, <
Equations in a Time Dependent Domain >>, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24,
[LES 93] M. LESSOINE and C. FARHAT, <
Aeroelastic Computatitions >>, lith AIAA Computational Fluid Dynamics Conference,
Orlando, Florida, July 6-9, 1993.
[LIO 69] J.L. LIONS, Quelques methodes de resolution des problemes au.x limites non
lineaires, Dunod, Paris, 1969.
[LIO 96] P.L. LIONS, Mathematical topics in .fluid mechanics. Vol. 1 and Vol. 2, Oxford Lecture
Series in Mathematics and its Applications, 3, Clarendon Press, Oxford University
Press, New York, 1996.
[MOR 92] H. MORAND and R.OHAYON,lnteractionjluide structure, RMA, Masson, 1992.
[MOU 96] J. MOURO, P. LE TALLEC, <
en mouvement »,Rapport INRIA ~2961, 1996.
[PIP 95] S. PIPERNO, C. FARHAT and B. LARROUTUROU,<< Partioned Procedures for the Transient
Solution of Coupled Aerolelastic Problems. Part I: Model Problem, Theory and Twodimensional
Applications >>, Comp. Methods in Appl. Mech. and Eng., 124, 1995.
[PIP 99] S. PIPERNO and C. FARHAT, <
Coupled Aerolelastic Problems. Part II: Energy Transfert Analysis and Three-dimensional
Applications>>, Preprint, 1999.
[SAL 85] R. SALVI, << On the Existence of a Weak Solution of a Non-Linear Mixed Problem
for the Navier-Stokes Equations in a Time Dependent Domain>>, J. Fac. Sci. Univ. Tokyo
Sect. lA Math., vol 32, 1985.
[SER 87] D. SERRE, << Chute libre d'un solide dans un fluide visqueux incompressible: Existence>>,
Japan J. Appl. Math., 4, 1987.
[SOL 77] V.A. SOLONNIKOV, <
Fluid Bounded by a Free Surface>>, Math. USSR /zvestiya, 11, W 6, 1977.
[SOL 88a] V.A. SOLONNIKOV, <
Incompressible Fluid>>, Math. USSR /zvestiya, 31, W 2, 1988.
[SOL 88b] V.A. SOLONNIKOV, <
surface >>, J. Soviet Math. 40, 1988.
[TEM 77] R. TEMAM, Navier-Stokes Equations, North-Holland Publishing Company, 1977.
[TEZ 92] T. TEZDUYAR, M. BEHR and J. LIOU, <
Involving Moving Boundaries and Interfaces. The Deforming SpatialiSpace-Time
Procedure: I. The Concept and the Preliminary Numerical Tests >>, Comput. Methods Appl.
Mech. Engrg., 94, 1992.
[TUC 00] M. TUCSNAK, << Weak Stability of the Solution of a Fluid-rigid Body Problem >>,
Preprint, 2000.