Mesh adaptivity in finite elements using the mortar method
Keywords:
Mesh adaptivity, finite elements, mortar methodAbstract
Relying on the mortar element technique, we propose an algorithm for mesh adaptivity in finite elements, where no conformity condition is enforced on the intersection of the triangles during the refinement process. We perform the numerical analysis of the final discretization.
Downloads
References
[BE] F. BEN BELGACEM, "Discretisations 30 non conformes par Ia methode de decomposition
de domaine des elements avec joints: analyse mathematique et mise en ceuvre pour le
probleme de Poisson", Thesis. Universite Pierre et Marie Curie, Paris, 1993.
[BG] C. BERNARDI. V. GIRAULT, "A local regularization operator for triangular and quadrilateral
finite elements", SIAM J. Numer. Anal., vol. 35. 1998. 1893-1916.
[BMPI] C. BERNARDI, Y. MADAY, A.T. PATERA, "A new nonconforming approach to domain
decomposition: the mortar element method", College de France Seminar, vol. XI,
H. Brezis & J.-L. Lions eds .. Pitman, 1994, 13-51.
[BMP2) C. BERNARDI. Y. MADAY, A.T. PATERA, "Domain decomposition by the mortar element
method", Asymptotic and Numerical Methods for Partial Differential Equations with
Critical Parameters, H.G. Kaper & M. Garbey eds., N.A.T.O. AS! Series C 384, Kluwer,
269-286.
[BMV] C. BERNARDI, B. METIVET, R. VERFORTH, "Analyse numerique d'indicateurs
d'erreur", Internal Report 93025, Laboratoire d' Analyse Numerique de l'Universite Pierre
et Marie Curie. Paris. 1993.
[GB] P.-L. GEORGE, H. BOROUCHAKI, Triangulation de Delaunay et mail/age. Applications
aux elbnents finis, Editions Hermes, 1997.
[OV] R.G. OWENS, J. VALENCIANO, "An h- p adaptive spectral element method for the
Stokes problem", Proceedings Fourth Int. Conf On Spectral And High Order Methods,
[PS] J. POUSIN, T. SASSI, "A posteriori error estimates and domain decomposition with non
matching grids", submitted to Model. Math. et Anal. Numer.
[VEl] R. YERFORTH, "A posteriori error estimation and adaptive mesh-refinement techniques",
J. Comput. Appl. Math., vol. 50, 1994,67-83.
[VE2) R. VERFORTH. A Review of A Posteriori Error Estimation and Adaptive MeshRefinement
Techniques, Wiley & Teubner. 1996.
[WI] 0.8. WJDLUND, "An extension theorem for finite element spaces with three applications",
Numerical Techniques in Continuum Mechanics, Proceedings of the Second GAMM
Seminar, W. Hackbush & K. Witsch eds., Kiel. 1986.
[WO] B. WOHLMUTH, "A residual based error estimator for mortar finite element discretizations",
Numer. Math., vol. 84, 1999, 143-171.