E" tude numerique d'estimations d'erreur a posteriori

Authors

  • Elisabeth Pichelin GIREF, Departement de Mathematiques et Statistiques Pavilion Pouliot, Universite Laval, Quebec, G 1 K 7P4, Canada
  • Michel Fortin GIREF, Departement de Mathematiques et Statistiques Pavilion Pouliot, Universite Laval, Quebec, G 1 K 7P4, Canada
  • Sylvain Boivin Departement d'lnformatique et de Mathematique Universite de Quebec a Chicoutimi, G7H 2Bl, Canada

Keywords:

a posteriori error estimates, interpolation error, hierarchical basis, finite element method

Abstract

Let u E V be the exact solution of a variational problem, which is approximated by some Uh E Vh, Vh being a suitable approximation space. A posteriori estimation of the error llu - uh II measures the (local) quality ofuh. Basic ideas for two kinds of error estimates are presented: one lies on interpolation err01; the other on a hierarchical basis. For a given elliptic boundary value problem approximated by a finite element method, some numerical results are given to show and compare the effectiveness and efficiency of the estimates. These estimates can be used in a self-adaptive mesh modification process.

Downloads

Download data is not yet available.

References

[BAB 78] BABUSKA I. et RHEINBOLDT W., <

method>>, International Journal for Numerical Methods in Engineering, vol. 12, 1978,

p. 1597-1615.

[BAB 86] BABUSKA 1., ZIENKIEWICZ 0., GAGO J. et DE A. OLIVEIRA E., <

and adaptative refinements in finite element computations>>, Wiley, 1986.

[BAN 90] BANK R. et WELFERT B., «A posteriori error estimates for the Stokes equations: a

comparison>>, Computer Methods in Applied Mechanics and Engineering, vol. 82, 1990, p.

-340.

[BAN 91] BANK R. et WELFERT B., <>,

SIAM Journal on Numerical Analysis, vol. 28, 1991, p. 591-623.

[BAN 93] BANK R. et SMITH R., <>,

SIAM Journal on Numerical Analysis, vol. 30, 1993, p. 921-935.

[BAN 98] BANK R., <>, Applied Numerical

Mathematics, vol. 26, 1998, p. 153-164.

[BAR 91] BARANGER 1. et AMRI H. E., <

adaptatif d'ecoulements quasi-newtonien>>, Modelisation Mathematique et Analyse Numerique,

vol. 25, 1991, p. 31-48.

[BES 92] BESPALOY A., KUZNETSOY Y., PIRONNEAU 0. et VALLET M., <

with separable preconditioners versus unstrucutured adapted meshes>>, Impact of

computing in science and engineering, vol. 4, 1992.

[BOR 95] BOROUCHAKI H., GEORGE P., HECHT F., LAUG P. et E.SALTEL, <

de Delaunay gouveme par une carte de metriques. Partie I: Algorithmes>>,

Rapport de recherche, 1995, INRIA - Rocquencourt.

[BOR 96] BORNEMANN F., ERDMANN B. et KORNHUBER R., <

for elliptic problems in two and three space dimensions>>, SIAM Journal on Numerical

Analysis, vol. 33, 1996, p. 1188-1204.

[FOR 96] FORTIN M., VALLET M., DOMPIERRE J., BOURGAULT Y. et HABASHI W., <

mesh adaptation: theory, validation and applications>>, In ECCOMAS, John Wiley

& Sons, 1996.

[HAB 98] HABASHI W., DOMPIERRE J., BOURGAULT Y., FORTIN M. et VALLET M., <

computational fluid dynamics through mesh optimization>>, AIAA Journal, vol. 36,

, p. 703-711.

[HET 91] HETU 1. et PELLETIER D., <

incompressible flow>>, AIAA /01

h Computational Fluid Dynamics Conference, Honoluulu,

Hawai', , 1991.

[PER 87] PERAIRE J ., VAHDATI M., MORGAN K. et ZIENKIEWICZ 0., <

for compressible flows>>, Journal of Computational Physic, vol. 72, 1987, p. 449-466.

[VAL 92] VALLET M., <>,

These de doctorat, Universite de Pierre et Marie Curie Paris VI, France, 1992.

[VER 89] VERFORTH R., <>, Numerische

Mathematik, vol. 55, 1989, p. 309-325.

[VER 94] VERFORTH R., <

discretizations of elliptic equations>>, Mathematics of computation, vol. 62, 1994, p.

-475.

[ZIE 86] ZIENKIEWICZ 0. et CRAIG A., <

solutions and hierarchical finite methods concepts>>, In Accuracy estimates and adaptative

refinement infinite element computations, John Wiley & Sons, New York, 1986, p. 25-59.

[ZIE 88] ZIENKIEWICZ 0., LIU Y. et HUANG G., <

formulation for forming problems>>, International Journal for Numerical Methods in Engineering,

vol. 25, 1988, p. 203-235.

[ZIE 92] ZIENKIEWICZ 0. et ZHU J., «The superconvergence patch recovery and a posteriori

error estimates. Part I: The recovery technique>>, International Journal for Numerical

Methods in Engineering, vol. 33, 1992, p. 1331-1364.

Downloads

Published

2000-05-20

How to Cite

Pichelin, E. ., Fortin, M. ., & Boivin, S. . (2000). E" tude numerique d’estimations d’erreur a posteriori. European Journal of Computational Mechanics, 9(4), 467–486. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2919

Issue

Section

Original Article