E" tude numerique d'estimations d'erreur a posteriori
Keywords:
a posteriori error estimates, interpolation error, hierarchical basis, finite element methodAbstract
Let u E V be the exact solution of a variational problem, which is approximated by some Uh E Vh, Vh being a suitable approximation space. A posteriori estimation of the error llu - uh II measures the (local) quality ofuh. Basic ideas for two kinds of error estimates are presented: one lies on interpolation err01; the other on a hierarchical basis. For a given elliptic boundary value problem approximated by a finite element method, some numerical results are given to show and compare the effectiveness and efficiency of the estimates. These estimates can be used in a self-adaptive mesh modification process.
Downloads
References
[BAB 78] BABUSKA I. et RHEINBOLDT W., <
method>>, International Journal for Numerical Methods in Engineering, vol. 12, 1978,
p. 1597-1615.
[BAB 86] BABUSKA 1., ZIENKIEWICZ 0., GAGO J. et DE A. OLIVEIRA E., <
and adaptative refinements in finite element computations>>, Wiley, 1986.
[BAN 90] BANK R. et WELFERT B., «A posteriori error estimates for the Stokes equations: a
comparison>>, Computer Methods in Applied Mechanics and Engineering, vol. 82, 1990, p.
-340.
[BAN 91] BANK R. et WELFERT B., <>,
SIAM Journal on Numerical Analysis, vol. 28, 1991, p. 591-623.
[BAN 93] BANK R. et SMITH R., <>,
SIAM Journal on Numerical Analysis, vol. 30, 1993, p. 921-935.
[BAN 98] BANK R., <>, Applied Numerical
Mathematics, vol. 26, 1998, p. 153-164.
[BAR 91] BARANGER 1. et AMRI H. E., <
adaptatif d'ecoulements quasi-newtonien>>, Modelisation Mathematique et Analyse Numerique,
vol. 25, 1991, p. 31-48.
[BES 92] BESPALOY A., KUZNETSOY Y., PIRONNEAU 0. et VALLET M., <
with separable preconditioners versus unstrucutured adapted meshes>>, Impact of
computing in science and engineering, vol. 4, 1992.
[BOR 95] BOROUCHAKI H., GEORGE P., HECHT F., LAUG P. et E.SALTEL, <
de Delaunay gouveme par une carte de metriques. Partie I: Algorithmes>>,
Rapport de recherche, 1995, INRIA - Rocquencourt.
[BOR 96] BORNEMANN F., ERDMANN B. et KORNHUBER R., <
for elliptic problems in two and three space dimensions>>, SIAM Journal on Numerical
Analysis, vol. 33, 1996, p. 1188-1204.
[FOR 96] FORTIN M., VALLET M., DOMPIERRE J., BOURGAULT Y. et HABASHI W., <
mesh adaptation: theory, validation and applications>>, In ECCOMAS, John Wiley
& Sons, 1996.
[HAB 98] HABASHI W., DOMPIERRE J., BOURGAULT Y., FORTIN M. et VALLET M., <
computational fluid dynamics through mesh optimization>>, AIAA Journal, vol. 36,
, p. 703-711.
[HET 91] HETU 1. et PELLETIER D., <
incompressible flow>>, AIAA /01
h Computational Fluid Dynamics Conference, Honoluulu,
Hawai', , 1991.
[PER 87] PERAIRE J ., VAHDATI M., MORGAN K. et ZIENKIEWICZ 0., <
for compressible flows>>, Journal of Computational Physic, vol. 72, 1987, p. 449-466.
[VAL 92] VALLET M., <>,
These de doctorat, Universite de Pierre et Marie Curie Paris VI, France, 1992.
[VER 89] VERFORTH R., <>, Numerische
Mathematik, vol. 55, 1989, p. 309-325.
discretizations of elliptic equations>>, Mathematics of computation, vol. 62, 1994, p.
-475.
[ZIE 86] ZIENKIEWICZ 0. et CRAIG A., <
solutions and hierarchical finite methods concepts>>, In Accuracy estimates and adaptative
refinement infinite element computations, John Wiley & Sons, New York, 1986, p. 25-59.
[ZIE 88] ZIENKIEWICZ 0., LIU Y. et HUANG G., <
formulation for forming problems>>, International Journal for Numerical Methods in Engineering,
vol. 25, 1988, p. 203-235.
[ZIE 92] ZIENKIEWICZ 0. et ZHU J., «The superconvergence patch recovery and a posteriori
error estimates. Part I: The recovery technique>>, International Journal for Numerical
Methods in Engineering, vol. 33, 1992, p. 1331-1364.