An application of a master-slave algorithm for solving 3D contact problems between deformable bodies in forming processes

Authors

  • Elisabeth Pichelin Ecole des Mines de Paris, CEMEF B.P. 207, F-06904 Sophia Antipolis Cedex
  • Katia Mocellin Ecole des Mines de Paris, CEMEF B.P. 207, F-06904 Sophia Antipolis Cedex
  • Lionel Fourment Ecole des Mines de Paris, CEMEF B.P. 207, F-06904 Sophia Antipolis Cedex
  • Jean-Loup Chenot Ecole des Mines de Paris, CEMEF B.P. 207, F-06904 Sophia Antipolis Cedex

Keywords:

contact, friction, master-slave algorithm, finite element, deformable bodies, penalty formulation

Abstract

We consider a finite element approximation of frictional contact problem between deformable bodies undergoing large deformations. The fully 3D mechanical coupling problem is expressed with a mixed velocity-pressure formulation. The multi-bodies contact problem is set as a linear complementary problem solved by a penalty method. The corresponding nonpenetration condition is approximated using a finite element meshes which do not necessarily fit on the contact zone. The local approach used to take into account unilateral contact on non-matching meshes is an extension of the master-slave algorithm. The mechanical system is solved using iterative methods. The associatedmodel and algorithm are implemented inside the 3D software Forge3 R. The selected application is the process of viscoplastic metal forging.

Downloads

Download data is not yet available.

References

[ARN 84] ARNOLD D., BREZZI F., FORTIN M., “A stable finite element for Stokes equations”,

Calcolo, vol. 21, 1984, p. 337–344.

[BAR 90] BARANGER J., NAJIB K., “Analyse numérique des écoulements quasi-newtoniens

dont la viscosité obéit à la loi puissance ou la loi de Carreau”, Numerische Mathematik,

vol. 58, 1990, p. 35–49.

[BAT 85] BATHE K., CHAUDHARY A., “A solution method for planar axisymmetric contact

problem”, International Journal for Numerical Methods in Engineering, vol. 21, 1985,

p. 65–88.

[BOY 99] BOYÈRE E., “Contribution à la modélisation numérique thermo-mécanique tridimensionnelle

du forgeage”, Thèse de doctorat, Ecole Nationale Supérieure des Mines de

Paris, 1999.

[BRE 74] BREZZI F., “On the existence, uniqueness and approximation of saddle point problems

arising from Lagrangian multipliers”, RAIRO, Modélisation Mathématique Analyse

Numérique, vol. 8, 1974, p. 129–151.

[BRE 91] BREZZI F., FORTIN M., “Mixed and Hybrid Finite Element Methods”, Springer–

Verlag, 1991.

[CES 93] CESCOTTO S., CHARLIER R., “Frictional contact finite elements based on the

mixed variational principles”, International Journal for NumericalMethods in Engineering,

vol. 36, 1993, p. 1681–1701.

[CHA 86] CHAUDHARY A., BATHE K., “A solutionmethod for static and dynamic analysis of

three dimensional contact problem with friction”, Computers & Structures, vol. 24, 1986,

p. 855–873.

[CHA 88] CHARLIER R., CESCOTTO S., “Modélisation du phénomène de contact unilatéral

avec frottement dans un contexte de grandes déformations”, Journal of Theoretical and

Applied Mechanics, Special Issue 1, vol. 7, 1988.

[CHA 98] CHABRAND P., DUBOIS F., RAOUS M., “Various numerical methods for solving

unilateral contact with friction”, Mathematical and Computer Modelling, vol. 28, 1998,

p. 97–108.

[CHE 92] CHENOT J., BELLET M., “The viscoplastic approach to the finite elementmodelling

of metal forming processes”, P. HARTLEY I. P., STURGESS C., Eds., Numericalmodelling

ofmaterial deformation processes : research,developments and applications, J.Wiley,New

York, 1992.

[CHE 98] CHERTIER O., CHABRAND P., “Etude du frottement pour des problèmes de contact

en grandes déformations”, Revue Européenne des éléments finis, vol. 7, 1998, p. 163–176.

[COU 96] COUPEZ T., “Stable-stabilized finite element for 3D forming calculation”, CEMEF,

rapport interne, 1996.

[COU 97a] COUPEZ T., “Mesh generation and adaptative remeshing by a local optomization

principle”, NAFEMS world congress 97, vol. 2, NAFEMS Ltd Glasgow, 1997, p. 1051–

[COU 97b] COUPEZ T., MARIE S., “From a direct to a parallel solver in 3D forming simulation”,

Internatinal Journal SupercomputerApplications and High PerformanceComputing,

vol. 11, 1997, p. 277–285.

[COU 00] COUPEZ T., “Génération et adaptation de maillage par optimisation locale”, Revue

Européenne des éléments finis, vol. 9, num. 4, 2000, p. 403–423.

[FIS 95] FISH J., BELSKY V., PANDHEERADI M., “Iterative and direct solvers for interface

problems with Lagrange multipliers”, Computing Systems in Engineering, vol. 6, 1995,

p. 261–273.

[FOU 99] FOURMENT L., CHENOT J., MOCELLIN K., “Numerical formulations and algorithms

for solving contact problems in metal forming simulation”, International Journal

for Numerical Methods in Engineering, vol. 46, 1999, p. 1435–1462.

[HAB 92] HABRAKEN A., RADU J., CHARLIER R., “Numerical approach of contact with

friction between two bodies in large deformations”, CURNIER A., Ed., Contact mechanics

international symposium, Presses polytechniques et universitaires romandes, 1992.

[HAB 97] HABRAKEN A., CESCOTTO S., “Contact between deformable solids : the fully coupled

approach”, Special Issue of Mathematical and Computer Modelling, , 1997, p. 117–

[HAL 85] HALLQUIST J., GOUDREAU G., BENSON D., “Sliding interfaces with contactimpact

in large-scale Lagrangian computations”, Computer Methods in Applied Mechanics

and Engineering, vol. 51, 1985, p. 107–137.

[HIL ] HILD P., “Numerical implementation of two nonconforming finite element methods

for unilateral contact”, To appear in Computational Methods in Applied Mechanic and

Engineering.

[LAU 93] LAURSEN T., SIMO J., “A continuum-based finite element formulation for the implicit

solution of multibody, large deformation frictional contact problems”, International

Journal for NumericalMethods in Engineering, vol. 36, 1993, p. 3451–3485.

[MOR 70] MOREAU J., “Sur les lois de frottement de plasticité et de viscosité”, report

num. T271, 1970, C.R. Acad. Sc. Paris.

[PAN 97] PANTUSO D., BATHE K., “Finite element analysis of thermo-elastoplastic solids in

contact”, OWEN D., AL., Eds., Computational plasticity–Fundamental and applications,

Proceedings of the fifth international conference, Pineridge press : Swansea, 1997, p. 72–

[PAN 00] PANTUSO D., BATHE K., BOUZINOV P., “A finite element procedure for the analysis

of thermo-mechanical solids in contact”, Computers & Structures, vol. 75, 2000,

p. 551–573.

[PAV 96] PAVANACHAND C., KRISHNAKUMAR R., “A new one-pass approach for large deformation

multibody frictional contact analysis”, Communication in NumericalMethods in

Engineering, vol. 12, 1996, p. 569–579.

[PER 00] PERCHAT E., “Mini-élément et factorisations incomplètes pour la parallélisation

d’un solveur de Stokes 2D. Application au forgeage”, Thèse de doctorat, Ecole Nationale

Supérieure desMines de Paris, 2000.

[SIM 92] SIMO J., LAURSEN T., “An augmented Lagrangian treatment of contact problem

involving friction”, Computers & Structures, vol. 42, 1992, p. 97–116.

[SOY 92] SOYRIS N., FOURMENT L., COUPEZ T., CESCUTTI J., BRACHOTTE G., CHENOT

J., “Forging of a connecting rod : 3D finite element calculations”, Engineering computations,

vol. 9, num. 1, 1992, p. 63–80.

[SUR 86a] SURDON G., CHENOT J., “Finite element calculation of three-dimensional hot

forging”, NumericalMethods in Industrial Forming Processes, vol. 2, 1986, p. 287–292.

[SUR 86b] SURDON G., CHENOT J., “Finite element calculations of three-dimensional hot

forging”, MATTIASSON K., AL., Eds., International conference on numerical methods in

industrial forming processes NUMIFORM 86, A.A. Balkema : Rotterdam, 1986, p. 287–

[VAU 98] VAUTIER I., TARDIEU N., TAHERI S., “A master-slave large slip contact algorithm

coupled to an active set method : application to the modelling of indentation”, S. IDELSOHN

E. O., DVORKIN E., Eds., Computational mechanics, CIMNE, Barcelona, Spain,

[WAT 93] WATHEN A., SILVESTER D., “Fast iterative solution of stabilized Stokes systems.

Part I : using simple diagonal preconditioners”, SIAM Journal on Numerical Analysis,

vol. 30, 1993, p. 630–649.

[WRI 90] WRIGGERS P., VU VAN T., STEIN E., “Finite element formulation of large deformation

impact-contact problems with friction”, Computers & Structures, vol. 37, 1990,

p. 319–331.

[WRI 95] WRIGGERS P., “Finite element algorithms for contact problems”, Arch. of Comp.

Meth. in Eng., vol. 2, 1995, p. 1–49.

[ZAV 95] ZAVARISE G., WRIGGERS P., SCHREFLER B., “On augmented Lagrangian algorithms

for thermomecanical contact problems with friction”, International Journal for NumericalMethods

in Engineering, , 1995, p. 2929–2949.

Downloads

Published

2001-08-10

How to Cite

Pichelin, E. ., Mocellin, K. ., Fourment, L. ., & Chenot, J.-L. . (2001). An application of a master-slave algorithm for solving 3D contact problems between deformable bodies in forming processes. European Journal of Computational Mechanics, 10(8), 857–880. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2677

Issue

Section

Original Article