An application of a master-slave algorithm for solving 3D contact problems between deformable bodies in forming processes
Keywords:
contact, friction, master-slave algorithm, finite element, deformable bodies, penalty formulationAbstract
We consider a finite element approximation of frictional contact problem between deformable bodies undergoing large deformations. The fully 3D mechanical coupling problem is expressed with a mixed velocity-pressure formulation. The multi-bodies contact problem is set as a linear complementary problem solved by a penalty method. The corresponding nonpenetration condition is approximated using a finite element meshes which do not necessarily fit on the contact zone. The local approach used to take into account unilateral contact on non-matching meshes is an extension of the master-slave algorithm. The mechanical system is solved using iterative methods. The associatedmodel and algorithm are implemented inside the 3D software Forge3 R. The selected application is the process of viscoplastic metal forging.
Downloads
References
[ARN 84] ARNOLD D., BREZZI F., FORTIN M., “A stable finite element for Stokes equations”,
Calcolo, vol. 21, 1984, p. 337–344.
[BAR 90] BARANGER J., NAJIB K., “Analyse numérique des écoulements quasi-newtoniens
dont la viscosité obéit à la loi puissance ou la loi de Carreau”, Numerische Mathematik,
vol. 58, 1990, p. 35–49.
[BAT 85] BATHE K., CHAUDHARY A., “A solution method for planar axisymmetric contact
problem”, International Journal for Numerical Methods in Engineering, vol. 21, 1985,
p. 65–88.
[BOY 99] BOYÈRE E., “Contribution à la modélisation numérique thermo-mécanique tridimensionnelle
du forgeage”, Thèse de doctorat, Ecole Nationale Supérieure des Mines de
Paris, 1999.
[BRE 74] BREZZI F., “On the existence, uniqueness and approximation of saddle point problems
arising from Lagrangian multipliers”, RAIRO, Modélisation Mathématique Analyse
Numérique, vol. 8, 1974, p. 129–151.
[BRE 91] BREZZI F., FORTIN M., “Mixed and Hybrid Finite Element Methods”, Springer–
Verlag, 1991.
[CES 93] CESCOTTO S., CHARLIER R., “Frictional contact finite elements based on the
mixed variational principles”, International Journal for NumericalMethods in Engineering,
vol. 36, 1993, p. 1681–1701.
[CHA 86] CHAUDHARY A., BATHE K., “A solutionmethod for static and dynamic analysis of
three dimensional contact problem with friction”, Computers & Structures, vol. 24, 1986,
p. 855–873.
[CHA 88] CHARLIER R., CESCOTTO S., “Modélisation du phénomène de contact unilatéral
avec frottement dans un contexte de grandes déformations”, Journal of Theoretical and
Applied Mechanics, Special Issue 1, vol. 7, 1988.
[CHA 98] CHABRAND P., DUBOIS F., RAOUS M., “Various numerical methods for solving
unilateral contact with friction”, Mathematical and Computer Modelling, vol. 28, 1998,
p. 97–108.
[CHE 92] CHENOT J., BELLET M., “The viscoplastic approach to the finite elementmodelling
of metal forming processes”, P. HARTLEY I. P., STURGESS C., Eds., Numericalmodelling
ofmaterial deformation processes : research,developments and applications, J.Wiley,New
York, 1992.
[CHE 98] CHERTIER O., CHABRAND P., “Etude du frottement pour des problèmes de contact
en grandes déformations”, Revue Européenne des éléments finis, vol. 7, 1998, p. 163–176.
[COU 96] COUPEZ T., “Stable-stabilized finite element for 3D forming calculation”, CEMEF,
rapport interne, 1996.
[COU 97a] COUPEZ T., “Mesh generation and adaptative remeshing by a local optomization
principle”, NAFEMS world congress 97, vol. 2, NAFEMS Ltd Glasgow, 1997, p. 1051–
[COU 97b] COUPEZ T., MARIE S., “From a direct to a parallel solver in 3D forming simulation”,
Internatinal Journal SupercomputerApplications and High PerformanceComputing,
vol. 11, 1997, p. 277–285.
[COU 00] COUPEZ T., “Génération et adaptation de maillage par optimisation locale”, Revue
Européenne des éléments finis, vol. 9, num. 4, 2000, p. 403–423.
[FIS 95] FISH J., BELSKY V., PANDHEERADI M., “Iterative and direct solvers for interface
problems with Lagrange multipliers”, Computing Systems in Engineering, vol. 6, 1995,
p. 261–273.
[FOU 99] FOURMENT L., CHENOT J., MOCELLIN K., “Numerical formulations and algorithms
for solving contact problems in metal forming simulation”, International Journal
for Numerical Methods in Engineering, vol. 46, 1999, p. 1435–1462.
[HAB 92] HABRAKEN A., RADU J., CHARLIER R., “Numerical approach of contact with
friction between two bodies in large deformations”, CURNIER A., Ed., Contact mechanics
international symposium, Presses polytechniques et universitaires romandes, 1992.
[HAB 97] HABRAKEN A., CESCOTTO S., “Contact between deformable solids : the fully coupled
approach”, Special Issue of Mathematical and Computer Modelling, , 1997, p. 117–
[HAL 85] HALLQUIST J., GOUDREAU G., BENSON D., “Sliding interfaces with contactimpact
in large-scale Lagrangian computations”, Computer Methods in Applied Mechanics
and Engineering, vol. 51, 1985, p. 107–137.
[HIL ] HILD P., “Numerical implementation of two nonconforming finite element methods
for unilateral contact”, To appear in Computational Methods in Applied Mechanic and
Engineering.
[LAU 93] LAURSEN T., SIMO J., “A continuum-based finite element formulation for the implicit
solution of multibody, large deformation frictional contact problems”, International
Journal for NumericalMethods in Engineering, vol. 36, 1993, p. 3451–3485.
[MOR 70] MOREAU J., “Sur les lois de frottement de plasticité et de viscosité”, report
num. T271, 1970, C.R. Acad. Sc. Paris.
[PAN 97] PANTUSO D., BATHE K., “Finite element analysis of thermo-elastoplastic solids in
contact”, OWEN D., AL., Eds., Computational plasticity–Fundamental and applications,
Proceedings of the fifth international conference, Pineridge press : Swansea, 1997, p. 72–
[PAN 00] PANTUSO D., BATHE K., BOUZINOV P., “A finite element procedure for the analysis
of thermo-mechanical solids in contact”, Computers & Structures, vol. 75, 2000,
p. 551–573.
[PAV 96] PAVANACHAND C., KRISHNAKUMAR R., “A new one-pass approach for large deformation
multibody frictional contact analysis”, Communication in NumericalMethods in
Engineering, vol. 12, 1996, p. 569–579.
[PER 00] PERCHAT E., “Mini-élément et factorisations incomplètes pour la parallélisation
d’un solveur de Stokes 2D. Application au forgeage”, Thèse de doctorat, Ecole Nationale
Supérieure desMines de Paris, 2000.
[SIM 92] SIMO J., LAURSEN T., “An augmented Lagrangian treatment of contact problem
involving friction”, Computers & Structures, vol. 42, 1992, p. 97–116.
[SOY 92] SOYRIS N., FOURMENT L., COUPEZ T., CESCUTTI J., BRACHOTTE G., CHENOT
J., “Forging of a connecting rod : 3D finite element calculations”, Engineering computations,
vol. 9, num. 1, 1992, p. 63–80.
[SUR 86a] SURDON G., CHENOT J., “Finite element calculation of three-dimensional hot
forging”, NumericalMethods in Industrial Forming Processes, vol. 2, 1986, p. 287–292.
[SUR 86b] SURDON G., CHENOT J., “Finite element calculations of three-dimensional hot
forging”, MATTIASSON K., AL., Eds., International conference on numerical methods in
industrial forming processes NUMIFORM 86, A.A. Balkema : Rotterdam, 1986, p. 287–
[VAU 98] VAUTIER I., TARDIEU N., TAHERI S., “A master-slave large slip contact algorithm
coupled to an active set method : application to the modelling of indentation”, S. IDELSOHN
E. O., DVORKIN E., Eds., Computational mechanics, CIMNE, Barcelona, Spain,
[WAT 93] WATHEN A., SILVESTER D., “Fast iterative solution of stabilized Stokes systems.
Part I : using simple diagonal preconditioners”, SIAM Journal on Numerical Analysis,
vol. 30, 1993, p. 630–649.
[WRI 90] WRIGGERS P., VU VAN T., STEIN E., “Finite element formulation of large deformation
impact-contact problems with friction”, Computers & Structures, vol. 37, 1990,
p. 319–331.
[WRI 95] WRIGGERS P., “Finite element algorithms for contact problems”, Arch. of Comp.
Meth. in Eng., vol. 2, 1995, p. 1–49.
[ZAV 95] ZAVARISE G., WRIGGERS P., SCHREFLER B., “On augmented Lagrangian algorithms
for thermomecanical contact problems with friction”, International Journal for NumericalMethods
in Engineering, , 1995, p. 2929–2949.