Analyse non lineaire geometrique de plaques multicouches

Un nouvel eU~ment fini C1

Authors

  • Olivier Polit Llvf2S- UPRES.A 8007- ENSAM 151 Bd de l'Hopital- F_75013 Paris and Universite Paris X- JUT- Dep. GMP 1 Chemin Desvallieres- F_92410 Ville d'Avray
  • Maurice Touratier Universite Paris X- JUT- Dep. GMP 1 Chemin Desvallieres- F_92410 Ville d'Avray

Keywords:

multilayered plates, refined model, C1 finite element, transverse normal stress, linear and non-linear tests

Abstract

In this paper, we focus our attention on geometrically non linear behaviour of multilayered plates. For this purpose, a high order plate model is used which exactly ensure both the continuity conditions for displacements and transverse shear stresses at the interfaces between layers of a laminated structure, and the boundary conditions at the upper and lower surfaces of the plate. Based on this kinematics, a six node C1 triangular finite element is developed, using a conforming finite element method and a displacement approach. The Argy'T'is interpolation is used for transverse displacement and the Ganev interpolation is used for membrane displacements and transverse shear rotations. A set of linear and non-linear tests is presented in order to show the efficiency of this finite element.

Downloads

Download data is not yet available.

References

[ ARG 68] ARGYRIS J., FRIED I. et ScHARPF D., " The TUBA family of plate

elements for the matrix displacement method ". Aero. J. Royal Aeronaut.

Soc., vol. 72, p. 701-709, 1968.

[AUR 99] AURICCHIO F. et SACCO E., "A mixed-enhanced finite element for

the analysis of laminated composite plates ". Int. Jour. Num. Meth. Eng.,

vol. 44, p. 1481-1504, 1999.

[BEA 93] BEAKOU A. et TOURATIER M., " A rectangular finite element for

analysing composite multilayered shallow shells in statics, vibration and

buckling". Int. Jour. Num. Meth. Eng., val. 36, p. 627-653, 1993.

[BER 96] BERNADOU M., Finite Element Methods for Thin Shell Problems.

John Wiley et Sons, 1996.

[CAR 96] CARRERA E., " C0 Reissner-Mindlin multilayered plate elements

including zig-zag and interlaminar stress continuity ". Int. Jour. Num.

Meth. Eng., val. 39, p. 1797-1820, 1996.

[DUN 85] DUNAVANT D., " Hight degree efficient symmetrical gaussian

quadrature rules for the triangle". Int. Jour. Num. Meth. Eng., vol. 21, p.

-1148, 1985.

[GAN 80] GANEY H. et DIMITROV T., "Calculation of arch dams as a shell

using IBM-370 Computer and curved finite elements". In Theory of shells,

p. 691-696. North-Holland, Amsterdam, 1980.

[NOO 94] NOOR A., BURTON W. et PETERS J., "Hierarchical adaptative

modeling of structural sandwiches and multilayered composite panels ".

Appl. Num. Math., val. 14, p. 69-90, 1994.

[NOO 96] NOOR A., BURTON W. et BERT C., " Computational models for

sandwich panels and shells". App. Mech. Rev., val. 49, n° 3, p. 155-199,

[PAG 70] PAGANO N., "Exact solutions for rectangular bidirectional composites

and sandwich plates ". J. Camp. Materials, val. 4, p. 20-34, 1970.

[POL 94] POLIT 0., TOURATIER M. et LORY P., "A new eight-node quadrilateral

shear-bending plate finite element ". Int. Jour. Num. Meth. Eng.,

vol. 37, p. 387-411, 1994.

[RED 89] REDDY J., " On refined computational models of composite laminates

". Int. Jour. Num. Meth. Eng., vol. 27, p. 361-382, 1989.

[RED 97] REDDY J ., Mechanics of laminated composite plates - Theory and

analysis. CRC Press Inc., 1997.

[SCI 95] SCIUVA M. D., " A third order triangular multilayered plate finite

element with continuous interlaminar stresses ". Int. Jour. Num. Meth.

Eng., val. 38, p. 1-26, 1995.

[SRI 70] SRINIVAS S. et RAO A., "Bending, vibration and buckling of simply

supported thick orthotropic rectangular plates and laminates ". Int. J.

Solids Struc., vol. 6, p. 1463-1481, 1970.

[TOU 91] TOURATIER M., "An efficient standard plate theory". Int. J. Eng.

Sci., vol. 29, p. 901-916, 1991.

Downloads

Published

2000-01-26

How to Cite

Polit, O. ., & Touratier, M. . (2000). Analyse non lineaire geometrique de plaques multicouches: Un nouvel eU~ment fini C1. European Journal of Computational Mechanics, 9(1-3), 295–314. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2955

Issue

Section

Original Article