A computational study of mucociliary transport in healthy and diseased environments
Keywords:
Cilia-driven flows, viscoelastic fluidAbstract
Mucociliary clearance is the primary defense mechanism that protects the airways from inhaled toxicants and infectious agents. The fluid medium is spatially non-homogenous, consisting of a viscoelastic mucus layer on top of a nearly-viscous periciliary layer surrounding the motile cilia. In healthy environments, the thickness of the periciliary layer is comparable to the cilia length. Perturbations to this system are directly linked to infection and disease. Clinical evidence links the periciliary layer depletion to reduced rates of mucus clearance. Here, we develop a computational model to systematically study the effects of the viscoelastic properties and thickness of the mucus layer on the system’s performance. We find that, compared to a control case with no mucus, a healthy mucus layer enhances the cilia performance: it improves flow transport at an energetic advantage to the cilia. In contrast, when the periciliary layer is depleted, mucus hinders transport and stiffer mucus leads to a substantial decrease in transport efficiency. This decrease in transport is accompanied by an increase in the cilia internal forces and power needed to complete the cilia beating cycle. We conclude by commenting on the relevance of these findings to understanding mucociliary transport in healthy and diseased environments.
Downloads
References
Barton, C., & Raynor, S. (1967). Analytical investigation of cilia induced mucous flow. The
Bulletin of Mathematical Biophysics, 29, 419–428.
Benam, K. H., Dauth, S., Hassell, B., Herland, A., Jain, A., Jang, K.-J., ... Ingber, D. E. (2015).
Engineered in vitro disease models. Annual Review of Pathology: Mechanisms of Disease,
, 195–262.
Bhatia, S. N. & Ingber, D. E. (2014). Microfluidic organs-on-chips. Nature Biotechnology, 32,
–772.
Boucher, R. C. (2004). New concepts of the pathogenesis of cystic fibrosis lung disease.
European Respiratory Journal, 23, 146–158.
Boucher, R. C. (2007). Evidence for airway surface dehydration as the initiating event in cf
airway disease. Journal of Internal Medicine, 261, 5–16.
Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annual
Review of Fluid Mechanics, 9, 339–398.
Brooks, E. R. &Wallingford, J. B. (2014). Multiciliated cells. Current Biology, 24, R973–R982.
Button, B., Cai, L.-H., Ehre, C., Kesimer, M., Hill, D. B., Sheehan, J. K., ... Rubinstein, M.
(2012). A periciliary brush promotes the lung health by separating the mucus layer from
airway epithelia. Science, 337, 937–941.
Chang,W., Giraldo, F.,&Perot, B. (2002). Analysis of an exact fractional stepmethod. Journal
of Computational Physics, 180, 183–199.
Chatelin, R., & Poncet, P. (2016). A parametric study of mucociliary transport by numerical
simulations of 3d non-homogeneous mucus. Journal of Biomechanics, 49, 1772–1780.
Chopra, S. K., Taplin, G. V., Simmons,D.H., & Elam, D. (1977). Measurement ofmucociliary
transport velocity in the intact mucosa. CHEST Journal, 71, 155–158.
Chorin, A. J. (1968). Numerical solution of the navier-stokes equations. Mathematics of
Computation, 22, 745–762.
Chrispell, J., Cortez, R., Khismatullin, D., & Fauci, L. (2011). Shape oscillations of a droplet
in an oldroyd-b fluid. Physica D: Nonlinear Phenomena, 240, 1593–1601.
Chrispell, J., Fauci, L., & Shelley, M. (2013). An actuated elastic sheet interacting with passive
and active structures in a viscoelastic fluid. Physics of Fluids, 25, e1002167.
Comer, D.M., Elborn, J. S., & Ennis, M. (2012). Comparison of nasal and bronchial epithelial
cells obtained from patients with copd. PLOS ONE, 7, e32924.
Cone, R. A. (2009). Barrier properties of mucus. Advanced Drug Delivery Reviews, 61, 75–85.
Davenport, J. R., & Yoder, B. K. (2005). An incredible decade for the primary cilium: A
look at a once-forgotten organelle. American Journal of Physiology-Renal Physiology, 289,
F1159–F1169.
Del Bigio, M. R. (1995). The ependyma: A protective barrier between brain and cerebrospinal
fluid. Glia, 14, 1–13.
Del Donno, M., Bittesnich, D., Chetta, A., Olivieri, D., & Lopez-Vidriero, M. T. (2000). The
effect of inflammation on mucociliary clearance in asthma: An overview. CHEST Journal,
, 1142–1149.
den Toonder, J., Bos, F., Broer, D., Filippini, L., Gillies, M., de Goede, J., ... Anderson, P.
(2008). Artificial cilia for active micro-fluidic mixing. Lab on a Chip, 8, 533–541.
Dillon, R. H., Fauci, L. J., Omoto, C., & Yang, X. (2007). Fluid dynamic models of flagellar
and ciliary beating. Annals of the New York Academy of Sciences, 1101, 494–505.
Ding, Y., Nawroth, J. C., McFall-Ngai, M. J., & Kanso, E. (2014). Mixing and transport by
ciliary carpets: a numerical study. Journal of Fluid Mechanics, 743, 124–140.
Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A., & Bibette, J. (2005).
Microscopic artificial swimmers. Nature, 437, 862–865.
Eelkema, R., Pollard, M. M., Vicario, J., Katsonis, N., Ramon, B. S., Bastiaansen, C. W., &
Feringa, B. L. (2006). Molecular machines: Nanomotor rotates microscale objects. Nature,
, 163–163.
Eloy, C. & Lauga, E. (2012). Kinematics of the most efficient cilium. Physical Review Letters,
, 038101.
Evans, B. A., Shields, A. R., Carroll, R. L., Washburn, S., Falvo, M. R., & Superfine, R. (2007).
Magnetically actuated nanorod arrays as biomimetic cilia. Nano Letters, 7, 1428–1434.
Fahy, J. V., & Dickey, B. F. (2010). Airway mucus function and dysfunction. New England
Journal of Medicine, 363, 2233–2247.
Fauci, L. J., & Dillon, R. (2006). Biofluidmechanics of reproduction. Annual Review of Fluid
Mechanics, 38, 371–394.
Fletcher, C. (2012). Computational techniques for fluid dynamics 2: Specific techniques for
different flow categories. New York, NY: Springer Science & Business Media.
Fulford, G. R., & Blake, J. R. (1986). Muco-ciliary transport in the lung. Journal of Theoretical
Biology, 121, 381–402.
Gilboa, A., & Silberberg, A. (1976). In situ rheological characterization of epithelial mucus.
Biorheology, 13, 59–65.
Guo, H., Nawroth, J. C., Ding, Y., & Kanso, E. (2014). Cilia beating patterns are not
hydrodynamically optimal. Physics of Fluids, 26, 091901.
Hogg, J. C. (2004). Pathophysiology of airflow limitation in chronic obstructive pulmonary
disease. The Lancet, 364, 709–721.
Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y., & Ingber, D. E.
(2010). Reconstituting organ-level lung functions on a chip. Science, 328, 1662–1668.
ICRP, & I. C. on Radiological Protection. (1994). ICRP Publication 66: Human Respiratory
Tract Model for Radiological Protection, Number 66. New York, NY: Elsevier Health
Sciences.
Jayathilake, P. G., Le, D. V., Tan, Z., Lee, H. P., & Khoo, B. C. (2015). A numerical study
of muco-ciliary transport under the condition of diseased cilia. Computer Methods in
Biomechanics and Biomedical Engineering, 18, 944–951.
Jayathilake, P. G., Tan, Z., Le, D. V., Lee, H. P., & Khoo, B. C. (2012). Three-dimensional
numerical simulations of human pulmonary cilia in the periciliary liquid layer by the
immersed boundary method. Computers & Fluids, 67, 130–137.
Khaderi, S., Craus, C., Hussong, J., Schorr, N., Belardi, J., Westerweel, J., Prucker, O., Rühe,
J., Den Toonder, J., & Onck, P. (2011). Magnetically-actuated artificial cilia for microfluidic
propulsion. Lab on a Chip, 11, 2002–2010.
Khatavkar, V. V., Anderson, P. D., den Toonder, J. M., & Meijer, H. E. (2007). Active
micromixer based on artificial cilia. Physics of Fluids, 19, 083605.
Kirby, B. J. (2010). Micro-and nanoscale fluid mechanics: Transport in microfluidic devices.
New York, NY: Cambridge University Press.
Larson, R. G. (1999). The structure and rheology of complex fluids. New York, NY: Oxford
University Press.
Lauga, E. (2007). Propulsion in a viscoelastic fluid. Physics of Fluids, 19, 083104.
Lee, W. L., Jayathilake, P. G., Tan, Z., Le, D. V., Lee, H. P., & Khoo, B. C. (2011). Muco-ciliary
transport: effect of mucus viscosity, cilia beat frequency and cilia density. Computers &
Fluids, 49, 214–221.
Li, W.-E., Chen, W.,Ma, Y.-F., Tuo,Q.-R., Luo, X.-J., Zhang, T., ... Liu,Q.-H. (2012). Methods
to measure and analyze ciliary beat activity: Ca2+ influx-mediated cilia mechanosensitivity.
Pflügers Archiv-European Journal of Physiology, 464, 671–680.
Li, Z., Favier, J., D’Ortona, U., & Poncet, S. (2016). An immersed boundary-lattice boltzmann
method for single-and multi-component fluid flows. Journal of Computational Physics, 304,
–440.
Livraghi, A., & Randell, S. H. (2007). Cystic fibrosis and other respiratory diseases of impaired
mucus clearance. Toxicologic Pathology, 35, 116–129.
Lyons, R. A., Saridogan, E., & Djahanbakhch, O. (2006). The reproductive significance of
human fallopian tube cilia. Human Reproduction Update, 12, 363–372.
Mark, D., Haeberle, S., Roth, G., von Stetten, F., & Zengerle, R. (2010). Microfluidic lab-ona-
chip platforms: requirements, characteristics and applications. Chemical Society Reviews,
, 1153–1182.
Masoud, H., & Alexeev, A. (2011). Harnessing synthetic cilia to regulate motion of
microparticles. Soft Matter, 7, 8702–8708.
Matsui, H., Randell, S. H., Peretti, S.W., Davis, C. W., & Boucher, R. C. (1998). Coordinated
clearance of periciliary liquid and mucus from airway surfaces. Journal of Clinical
Investigation, 102, 1125.
McFall-Ngai, M. (2014). Divining the essence of symbiosis: Insights from the squid-vibrio
model. PLOS Biology, 12, e1001783.
Mirzadeh, Z., Han, Y.-G., Soriano-Navarro, M., García-Verdugo, J. M., & Alvarez-Buylla, A.
(2010). Cilia organize ependymal planar polarity. The Journal of Neuroscience, 30, 2600–
Mitran, S.M. (2007). Metachronal wave formation in a model of pulmonary cilia. Computers
& structures, 85, 763–774.
Montenegro-Johnson, T. D., Smith, D. J., & Loghin, D. (2013). Physics of rheologically
enhanced propulsion: Different strokes in generalized stokes. Physics of Fluids, 25, 081903.
Nawroth, J. C., & Parker, K. K. (2013). Design standards for engineered tissues. Biotechnology
Advances, 31, 632–637.
Nelson, B. J., Kaliakatsos, I. K., & Abbott, J. J. (2010). Microrobots for minimally invasive
medicine. Annual Review of Biomedical Engineering, 12, 55–85.
O’Callaghan, C., Sikand, K., & Rutman, A. (1999). Respiratory and brain ependymal ciliary
function. Pediatric Research, 46, 704–704.
Osterman, N., & Vilfan, A. (2011). Finding the ciliary beating pattern with optimal efficiency.
Proceedings of the National Academy of Sciences, 108, 15727–15732.
Patteson, A., Gopinath, A., Goulian, M., & Arratia, P. (2015). Running and tumbling with e
coli in polymeric solutions. Scientific Reports, 5, 15761.
Peskin, C. S. (1972). Flow patterns around heart valves: a numerical method. Journal of
Computational Physics, 10, 252–271.
Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11, 479–517.
Peyer, K. E., Zhang, L., & Nelson, B. J. (2013). Bio-inspired magnetic swimming microrobots
for biomedical applications. Nanoscale, 5, 1259–1272.
Qin, B., Gopinath, A., Yang, J., Gollub, J., & Arratia, P. (2015). Flagellar kinematics and
swimming of algal cells in viscoelastic fluids. Scientific Reports, 5(9190).
Randell, S. H., & Boucher, R. C. (2006). Effective mucus clearance is essential for respiratory
health. American Journal of Respiratory Cell and Molecular Biology, 35, 20–28.
Rogers, D. F. (2004). Airway mucus hypersecretion in asthma: An undervalued pathology?
Current Opinion in Pharmacology, 4, 241–250.
Rogers, D. F. (2005). Mucociliary dysfunction in copd: effect of current pharmacotherapeutic
options. Pulmonary Pharmacology & Therapeutics, 18, 1–8.
Roma, A. M., Peskin, C. S., & Berger, M. J. (1999). An adaptive version of the immersed
boundary method. Journal of Computational Physics, 153, 509–534.
Ross, S. M. (1971). A wavy wall analytical model of muco-ciliary pumping (PhD thesis), Johns
Hopkins University.
Salathe, M., O’Riordan, T. & Wanner, A. (1997). Mucociliary clearance. The Lung: Scientific
Foundations (pp. 2295–2308). Philadelphia: Lippencott-Raven Inc.
Sanderson,M. J.,&Sleigh, M. A. (1981). Ciliary activity of cultured rabbit tracheal epithelium:
Beat pattern and metachrony. Journal of Cell Science, 47, 331–347.
Seybold, Z. V., Mariassy, A. T., Stroh, D., Kim, C. S., Gazeroglu, H., & Wanner, A. (1990).
Mucociliary interaction in vitro: Effects of physiological and inflammatory stimuli. Journal
of Applied Physiology, 68, 1421–1426.
Seys, L. J., Verhamme, F. M., Dupont, L. L., Desauter, E., Duerr, J., Agircan, A. S., ... Bracke,
K. R. (2015). Airway surface dehydration aggravates cigarette smoke-induced hallmarks of
copd in mice. PLOS ONE, 10, e0129897.
Simonnet, C., & Groisman, A. (2005). Two-dimensional hydrodynamic focusing in a simple
microfluidic device. Applied Physics Letters, 87, 114104.
Smith, D. J., Gaffney, E. A., & Blake, J. R. (2007). A viscoelastic traction layer model of
muco-ciliary transport. Bulletin of Mathematical Biology, 69, 289–327.
Smith, D. J.,Gaffney, E. A.,&Blake, J. R. (2008). Modelling mucociliary clearance. Respiratory
Physiology & Neurobiology, 163, 178–188.
Smith, D. J., Gaffney, E. A. & Blake, J. R. (2009). Mathematical modelling of cilia-driven
transport of biological fluids. Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences (pp. rspa20090018). London: The Royal Society.
Stone, H. A., Stroock, A. D., & Ajdari, A. (2004). Engineering flows in small devices:
microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 36, 381–411.
Taira, K., & Colonius, T. (2007). The immersed boundary method: A projection approach.
Journal of Computational Physics, 225, 2118–2137.
Tarran, R., Grubb, B. R., Parsons, D., Picher, M., Hirsh, A. J., Davis, C.W., & Boucher, R. C.
(2001). The cf salt controversy: In vivo observations and therapeutic approaches. Molecular
cell, 8, 149–158.
Taylor, G. I. (1951). Analysis of the swimming of microscopic organisms. Proceedings of the
Royal Society of London Series A, 209, 447–461.
Teran, J., Fauci, L., & Shelley, M. (2010). Viscoelastic fluid response can increase the speed
and efficiency of a free swimmer. Physical Review Letters, 104, 038101.
Teran, J. M., & Peskin, C. S. (2009). Tether force constraints in stokes flow by the immersed
boundary method on a periodic domain. SIAM Journal on Scientific Computing, 31, 3404–
Thomases, B. (2011). An analysis of the effect of stress diffusion on the dynamics of creeping
viscoelastic flow. Journal of Non-Newtonian Fluid Mechanics, 166, 1221–1228.
Thomases, B., & Guy, R. D. (2014). Mechanisms of elastic enhancement and hindrance
for finite-length undulatory swimmers in viscoelastic fluids. Physical Review Letters, 113,
Tierno, P., Golestanian, R., Pagonabarraga, I., & Sagués, F. (2008). Controlled swimming
in confined fluids of magnetically actuated colloidal rotors. Physical Review Letters, 101,
Van Delden, R. A., Ter Wiel,M. K., Pollard,M.M., Vicario, J., Koumura, N., & Feringa, B. L.
(2005). Unidirectional molecular motor on a gold surface. Nature, 437, 1337–1340.
Vilfan, M., Potocnik, A., Kavcic, B., Osterman, N., Poberaj, I., Vilfan, A., & Babic, D. (2010).
Self-assembled artificial cilia. Proceedings of the National Academy of Sciences, 107, 1844–
Wanner, A., Salathé, M., & O’Riordan, T. G. (1996). Mucociliary clearance in the airways.
American Journal of Respiratory and Critical Care Medicine, 154, 1868–1902.
Wielpütz, M. O.,Weinheimer, O., Eichinger, M.,Wiebel, M., Biederer, J., Kauczor, H.-U., ...
Puderbach, M. (2013). Pulmonary emphysema in cystic fibrosis detected by densitometry
on chest multidetector computed tomography. PLOS ONE, 8, e73142.
Zhao, B., Moore, J. S.,&Beebe, D. J. (2001). Surface-directed liquid flow inside microchannels.
Science, 291, 1023–1026.