A computational study of mucociliary transport in healthy and diseased environments

Authors

  • Hanliang Guo Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA
  • Eva Kanso Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, USA

Keywords:

Cilia-driven flows, viscoelastic fluid

Abstract

Mucociliary clearance is the primary defense mechanism that protects the airways from inhaled toxicants and infectious agents. The fluid medium is spatially non-homogenous, consisting of a viscoelastic mucus layer on top of a nearly-viscous periciliary layer surrounding the motile cilia. In healthy environments, the thickness of the periciliary layer is comparable to the cilia length. Perturbations to this system are directly linked to infection and disease. Clinical evidence links the periciliary layer depletion to reduced rates of mucus clearance. Here, we develop a computational model to systematically study the effects of the viscoelastic properties and thickness of the mucus layer on the system’s performance. We find that, compared to a control case with no mucus, a healthy mucus layer enhances the cilia performance: it improves flow transport at an energetic advantage to the cilia. In contrast, when the periciliary layer is depleted, mucus hinders transport and stiffer mucus leads to a substantial decrease in transport efficiency. This decrease in transport is accompanied by an increase in the cilia internal forces and power needed to complete the cilia beating cycle. We conclude by commenting on the relevance of these findings to understanding mucociliary transport in healthy and diseased environments.

Downloads

Download data is not yet available.

References

Barton, C., & Raynor, S. (1967). Analytical investigation of cilia induced mucous flow. The

Bulletin of Mathematical Biophysics, 29, 419–428.

Benam, K. H., Dauth, S., Hassell, B., Herland, A., Jain, A., Jang, K.-J., ... Ingber, D. E. (2015).

Engineered in vitro disease models. Annual Review of Pathology: Mechanisms of Disease,

, 195–262.

Bhatia, S. N. & Ingber, D. E. (2014). Microfluidic organs-on-chips. Nature Biotechnology, 32,

–772.

Boucher, R. C. (2004). New concepts of the pathogenesis of cystic fibrosis lung disease.

European Respiratory Journal, 23, 146–158.

Boucher, R. C. (2007). Evidence for airway surface dehydration as the initiating event in cf

airway disease. Journal of Internal Medicine, 261, 5–16.

Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annual

Review of Fluid Mechanics, 9, 339–398.

Brooks, E. R. &Wallingford, J. B. (2014). Multiciliated cells. Current Biology, 24, R973–R982.

Button, B., Cai, L.-H., Ehre, C., Kesimer, M., Hill, D. B., Sheehan, J. K., ... Rubinstein, M.

(2012). A periciliary brush promotes the lung health by separating the mucus layer from

airway epithelia. Science, 337, 937–941.

Chang,W., Giraldo, F.,&Perot, B. (2002). Analysis of an exact fractional stepmethod. Journal

of Computational Physics, 180, 183–199.

Chatelin, R., & Poncet, P. (2016). A parametric study of mucociliary transport by numerical

simulations of 3d non-homogeneous mucus. Journal of Biomechanics, 49, 1772–1780.

Chopra, S. K., Taplin, G. V., Simmons,D.H., & Elam, D. (1977). Measurement ofmucociliary

transport velocity in the intact mucosa. CHEST Journal, 71, 155–158.

Chorin, A. J. (1968). Numerical solution of the navier-stokes equations. Mathematics of

Computation, 22, 745–762.

Chrispell, J., Cortez, R., Khismatullin, D., & Fauci, L. (2011). Shape oscillations of a droplet

in an oldroyd-b fluid. Physica D: Nonlinear Phenomena, 240, 1593–1601.

Chrispell, J., Fauci, L., & Shelley, M. (2013). An actuated elastic sheet interacting with passive

and active structures in a viscoelastic fluid. Physics of Fluids, 25, e1002167.

Comer, D.M., Elborn, J. S., & Ennis, M. (2012). Comparison of nasal and bronchial epithelial

cells obtained from patients with copd. PLOS ONE, 7, e32924.

Cone, R. A. (2009). Barrier properties of mucus. Advanced Drug Delivery Reviews, 61, 75–85.

Davenport, J. R., & Yoder, B. K. (2005). An incredible decade for the primary cilium: A

look at a once-forgotten organelle. American Journal of Physiology-Renal Physiology, 289,

F1159–F1169.

Del Bigio, M. R. (1995). The ependyma: A protective barrier between brain and cerebrospinal

fluid. Glia, 14, 1–13.

Del Donno, M., Bittesnich, D., Chetta, A., Olivieri, D., & Lopez-Vidriero, M. T. (2000). The

effect of inflammation on mucociliary clearance in asthma: An overview. CHEST Journal,

, 1142–1149.

den Toonder, J., Bos, F., Broer, D., Filippini, L., Gillies, M., de Goede, J., ... Anderson, P.

(2008). Artificial cilia for active micro-fluidic mixing. Lab on a Chip, 8, 533–541.

Dillon, R. H., Fauci, L. J., Omoto, C., & Yang, X. (2007). Fluid dynamic models of flagellar

and ciliary beating. Annals of the New York Academy of Sciences, 1101, 494–505.

Ding, Y., Nawroth, J. C., McFall-Ngai, M. J., & Kanso, E. (2014). Mixing and transport by

ciliary carpets: a numerical study. Journal of Fluid Mechanics, 743, 124–140.

Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A., & Bibette, J. (2005).

Microscopic artificial swimmers. Nature, 437, 862–865.

Eelkema, R., Pollard, M. M., Vicario, J., Katsonis, N., Ramon, B. S., Bastiaansen, C. W., &

Feringa, B. L. (2006). Molecular machines: Nanomotor rotates microscale objects. Nature,

, 163–163.

Eloy, C. & Lauga, E. (2012). Kinematics of the most efficient cilium. Physical Review Letters,

, 038101.

Evans, B. A., Shields, A. R., Carroll, R. L., Washburn, S., Falvo, M. R., & Superfine, R. (2007).

Magnetically actuated nanorod arrays as biomimetic cilia. Nano Letters, 7, 1428–1434.

Fahy, J. V., & Dickey, B. F. (2010). Airway mucus function and dysfunction. New England

Journal of Medicine, 363, 2233–2247.

Fauci, L. J., & Dillon, R. (2006). Biofluidmechanics of reproduction. Annual Review of Fluid

Mechanics, 38, 371–394.

Fletcher, C. (2012). Computational techniques for fluid dynamics 2: Specific techniques for

different flow categories. New York, NY: Springer Science & Business Media.

Fulford, G. R., & Blake, J. R. (1986). Muco-ciliary transport in the lung. Journal of Theoretical

Biology, 121, 381–402.

Gilboa, A., & Silberberg, A. (1976). In situ rheological characterization of epithelial mucus.

Biorheology, 13, 59–65.

Guo, H., Nawroth, J. C., Ding, Y., & Kanso, E. (2014). Cilia beating patterns are not

hydrodynamically optimal. Physics of Fluids, 26, 091901.

Hogg, J. C. (2004). Pathophysiology of airflow limitation in chronic obstructive pulmonary

disease. The Lancet, 364, 709–721.

Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y., & Ingber, D. E.

(2010). Reconstituting organ-level lung functions on a chip. Science, 328, 1662–1668.

ICRP, & I. C. on Radiological Protection. (1994). ICRP Publication 66: Human Respiratory

Tract Model for Radiological Protection, Number 66. New York, NY: Elsevier Health

Sciences.

Jayathilake, P. G., Le, D. V., Tan, Z., Lee, H. P., & Khoo, B. C. (2015). A numerical study

of muco-ciliary transport under the condition of diseased cilia. Computer Methods in

Biomechanics and Biomedical Engineering, 18, 944–951.

Jayathilake, P. G., Tan, Z., Le, D. V., Lee, H. P., & Khoo, B. C. (2012). Three-dimensional

numerical simulations of human pulmonary cilia in the periciliary liquid layer by the

immersed boundary method. Computers & Fluids, 67, 130–137.

Khaderi, S., Craus, C., Hussong, J., Schorr, N., Belardi, J., Westerweel, J., Prucker, O., Rühe,

J., Den Toonder, J., & Onck, P. (2011). Magnetically-actuated artificial cilia for microfluidic

propulsion. Lab on a Chip, 11, 2002–2010.

Khatavkar, V. V., Anderson, P. D., den Toonder, J. M., & Meijer, H. E. (2007). Active

micromixer based on artificial cilia. Physics of Fluids, 19, 083605.

Kirby, B. J. (2010). Micro-and nanoscale fluid mechanics: Transport in microfluidic devices.

New York, NY: Cambridge University Press.

Larson, R. G. (1999). The structure and rheology of complex fluids. New York, NY: Oxford

University Press.

Lauga, E. (2007). Propulsion in a viscoelastic fluid. Physics of Fluids, 19, 083104.

Lee, W. L., Jayathilake, P. G., Tan, Z., Le, D. V., Lee, H. P., & Khoo, B. C. (2011). Muco-ciliary

transport: effect of mucus viscosity, cilia beat frequency and cilia density. Computers &

Fluids, 49, 214–221.

Li, W.-E., Chen, W.,Ma, Y.-F., Tuo,Q.-R., Luo, X.-J., Zhang, T., ... Liu,Q.-H. (2012). Methods

to measure and analyze ciliary beat activity: Ca2+ influx-mediated cilia mechanosensitivity.

Pflügers Archiv-European Journal of Physiology, 464, 671–680.

Li, Z., Favier, J., D’Ortona, U., & Poncet, S. (2016). An immersed boundary-lattice boltzmann

method for single-and multi-component fluid flows. Journal of Computational Physics, 304,

–440.

Livraghi, A., & Randell, S. H. (2007). Cystic fibrosis and other respiratory diseases of impaired

mucus clearance. Toxicologic Pathology, 35, 116–129.

Lyons, R. A., Saridogan, E., & Djahanbakhch, O. (2006). The reproductive significance of

human fallopian tube cilia. Human Reproduction Update, 12, 363–372.

Mark, D., Haeberle, S., Roth, G., von Stetten, F., & Zengerle, R. (2010). Microfluidic lab-ona-

chip platforms: requirements, characteristics and applications. Chemical Society Reviews,

, 1153–1182.

Masoud, H., & Alexeev, A. (2011). Harnessing synthetic cilia to regulate motion of

microparticles. Soft Matter, 7, 8702–8708.

Matsui, H., Randell, S. H., Peretti, S.W., Davis, C. W., & Boucher, R. C. (1998). Coordinated

clearance of periciliary liquid and mucus from airway surfaces. Journal of Clinical

Investigation, 102, 1125.

McFall-Ngai, M. (2014). Divining the essence of symbiosis: Insights from the squid-vibrio

model. PLOS Biology, 12, e1001783.

Mirzadeh, Z., Han, Y.-G., Soriano-Navarro, M., García-Verdugo, J. M., & Alvarez-Buylla, A.

(2010). Cilia organize ependymal planar polarity. The Journal of Neuroscience, 30, 2600–

Mitran, S.M. (2007). Metachronal wave formation in a model of pulmonary cilia. Computers

& structures, 85, 763–774.

Montenegro-Johnson, T. D., Smith, D. J., & Loghin, D. (2013). Physics of rheologically

enhanced propulsion: Different strokes in generalized stokes. Physics of Fluids, 25, 081903.

Nawroth, J. C., & Parker, K. K. (2013). Design standards for engineered tissues. Biotechnology

Advances, 31, 632–637.

Nelson, B. J., Kaliakatsos, I. K., & Abbott, J. J. (2010). Microrobots for minimally invasive

medicine. Annual Review of Biomedical Engineering, 12, 55–85.

O’Callaghan, C., Sikand, K., & Rutman, A. (1999). Respiratory and brain ependymal ciliary

function. Pediatric Research, 46, 704–704.

Osterman, N., & Vilfan, A. (2011). Finding the ciliary beating pattern with optimal efficiency.

Proceedings of the National Academy of Sciences, 108, 15727–15732.

Patteson, A., Gopinath, A., Goulian, M., & Arratia, P. (2015). Running and tumbling with e

coli in polymeric solutions. Scientific Reports, 5, 15761.

Peskin, C. S. (1972). Flow patterns around heart valves: a numerical method. Journal of

Computational Physics, 10, 252–271.

Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11, 479–517.

Peyer, K. E., Zhang, L., & Nelson, B. J. (2013). Bio-inspired magnetic swimming microrobots

for biomedical applications. Nanoscale, 5, 1259–1272.

Qin, B., Gopinath, A., Yang, J., Gollub, J., & Arratia, P. (2015). Flagellar kinematics and

swimming of algal cells in viscoelastic fluids. Scientific Reports, 5(9190).

Randell, S. H., & Boucher, R. C. (2006). Effective mucus clearance is essential for respiratory

health. American Journal of Respiratory Cell and Molecular Biology, 35, 20–28.

Rogers, D. F. (2004). Airway mucus hypersecretion in asthma: An undervalued pathology?

Current Opinion in Pharmacology, 4, 241–250.

Rogers, D. F. (2005). Mucociliary dysfunction in copd: effect of current pharmacotherapeutic

options. Pulmonary Pharmacology & Therapeutics, 18, 1–8.

Roma, A. M., Peskin, C. S., & Berger, M. J. (1999). An adaptive version of the immersed

boundary method. Journal of Computational Physics, 153, 509–534.

Ross, S. M. (1971). A wavy wall analytical model of muco-ciliary pumping (PhD thesis), Johns

Hopkins University.

Salathe, M., O’Riordan, T. & Wanner, A. (1997). Mucociliary clearance. The Lung: Scientific

Foundations (pp. 2295–2308). Philadelphia: Lippencott-Raven Inc.

Sanderson,M. J.,&Sleigh, M. A. (1981). Ciliary activity of cultured rabbit tracheal epithelium:

Beat pattern and metachrony. Journal of Cell Science, 47, 331–347.

Seybold, Z. V., Mariassy, A. T., Stroh, D., Kim, C. S., Gazeroglu, H., & Wanner, A. (1990).

Mucociliary interaction in vitro: Effects of physiological and inflammatory stimuli. Journal

of Applied Physiology, 68, 1421–1426.

Seys, L. J., Verhamme, F. M., Dupont, L. L., Desauter, E., Duerr, J., Agircan, A. S., ... Bracke,

K. R. (2015). Airway surface dehydration aggravates cigarette smoke-induced hallmarks of

copd in mice. PLOS ONE, 10, e0129897.

Simonnet, C., & Groisman, A. (2005). Two-dimensional hydrodynamic focusing in a simple

microfluidic device. Applied Physics Letters, 87, 114104.

Smith, D. J., Gaffney, E. A., & Blake, J. R. (2007). A viscoelastic traction layer model of

muco-ciliary transport. Bulletin of Mathematical Biology, 69, 289–327.

Smith, D. J.,Gaffney, E. A.,&Blake, J. R. (2008). Modelling mucociliary clearance. Respiratory

Physiology & Neurobiology, 163, 178–188.

Smith, D. J., Gaffney, E. A. & Blake, J. R. (2009). Mathematical modelling of cilia-driven

transport of biological fluids. Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences (pp. rspa20090018). London: The Royal Society.

Stone, H. A., Stroock, A. D., & Ajdari, A. (2004). Engineering flows in small devices:

microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 36, 381–411.

Taira, K., & Colonius, T. (2007). The immersed boundary method: A projection approach.

Journal of Computational Physics, 225, 2118–2137.

Tarran, R., Grubb, B. R., Parsons, D., Picher, M., Hirsh, A. J., Davis, C.W., & Boucher, R. C.

(2001). The cf salt controversy: In vivo observations and therapeutic approaches. Molecular

cell, 8, 149–158.

Taylor, G. I. (1951). Analysis of the swimming of microscopic organisms. Proceedings of the

Royal Society of London Series A, 209, 447–461.

Teran, J., Fauci, L., & Shelley, M. (2010). Viscoelastic fluid response can increase the speed

and efficiency of a free swimmer. Physical Review Letters, 104, 038101.

Teran, J. M., & Peskin, C. S. (2009). Tether force constraints in stokes flow by the immersed

boundary method on a periodic domain. SIAM Journal on Scientific Computing, 31, 3404–

Thomases, B. (2011). An analysis of the effect of stress diffusion on the dynamics of creeping

viscoelastic flow. Journal of Non-Newtonian Fluid Mechanics, 166, 1221–1228.

Thomases, B., & Guy, R. D. (2014). Mechanisms of elastic enhancement and hindrance

for finite-length undulatory swimmers in viscoelastic fluids. Physical Review Letters, 113,

Tierno, P., Golestanian, R., Pagonabarraga, I., & Sagués, F. (2008). Controlled swimming

in confined fluids of magnetically actuated colloidal rotors. Physical Review Letters, 101,

Van Delden, R. A., Ter Wiel,M. K., Pollard,M.M., Vicario, J., Koumura, N., & Feringa, B. L.

(2005). Unidirectional molecular motor on a gold surface. Nature, 437, 1337–1340.

Vilfan, M., Potocnik, A., Kavcic, B., Osterman, N., Poberaj, I., Vilfan, A., & Babic, D. (2010).

Self-assembled artificial cilia. Proceedings of the National Academy of Sciences, 107, 1844–

Wanner, A., Salathé, M., & O’Riordan, T. G. (1996). Mucociliary clearance in the airways.

American Journal of Respiratory and Critical Care Medicine, 154, 1868–1902.

Wielpütz, M. O.,Weinheimer, O., Eichinger, M.,Wiebel, M., Biederer, J., Kauczor, H.-U., ...

Puderbach, M. (2013). Pulmonary emphysema in cystic fibrosis detected by densitometry

on chest multidetector computed tomography. PLOS ONE, 8, e73142.

Zhao, B., Moore, J. S.,&Beebe, D. J. (2001). Surface-directed liquid flow inside microchannels.

Science, 291, 1023–1026.

Downloads

Published

2017-02-01

How to Cite

Guo, H., & Kanso, E. (2017). A computational study of mucociliary transport in healthy and diseased environments. European Journal of Computational Mechanics, 26(1-2), 4–30. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/310

Issue

Section

Original Article