Un probleme d'identification de parametre associe aux equations de Saint-Venant

Authors

  • Mekki ldrissi Ecole de technologie superieure Departement de genie mecanique Universite du Quebec 1100, rue Notre-Dame Ouest Montreal H3C 1 K3, Canada
  • Azzeddine Soulaimani Ecole de technologie superieure Departement de genie mecanique Universite du Quebec 1100, rue Notre-Dame Ouest Montreal H3C 1 K3, Canada

Keywords:

free suiface flows, finite element method, friction coefficient identification, optimal control

Abstract

This work presents a numerical method to automatically identify the friction coefficient which governs natural free suiface flows. The mathematical formulation is based on the optimal control theory. A Lagrangian operator, which partial derivatives provide respectively the state equations, the adjoint equations and the optimality condition, is introduced. A finite element method is used for space discretization. Two solution algorithms are proposed and tested on some steady flows. The first one is very robust and converges for any initial distribution of the friction coefficient. The second one converges for realistic initial trials, uses less memory and could be well extended to unsteady flows.

 

Downloads

Download data is not yet available.

References

A. Anju, M. Kawahara, K. Matsumoto, "Parameter identification of bottom

friction and eddy viscosity of tidal flow in Tokyo Bay", Computational Method

in Water Resources, A. Peters and al. eds. 1994 Kluwer Academic Publishers.

G. Alessandrini, "An identification problem for elliptic equation in two

variables", Ann. Math. Pur. Appl. vol.145, 1986, pp. 265-296.

G. Alessandrini, "On the identification of the leading coefficient of an elliptic

equation", Bolletino U.M.I Analisi Funzionale e Applicazioni serie VI, vol IV-c

, pp. 87-111.

C. Bernardi, 0. Pironneau, "On Shallow Water Equations at Low Reynolds

Number", 16 (1), pp. 59-104, 1991.

P. G. J. Ten Brummelhuis, A. W. Heemink, H. F. P. Van Den Boogaard,

"Identification of shallow sea models", Int. Jour. For Num. Meth. in Fluids ,

vol. 17, pp. 637-665, 1993.

J. Carrera, S. P. Neuman, "Estimation of aquifer parameters under transient

and steady state conditions", Water Res. Resarch, vol. 22, 2, pp.199-210, 1986.

G. Chavent, "A nonlinear least-square theory for inverse problems", in Inverse

method in Action. Springer, Berlin, New-York, 1990.

G. Chavent, P. Lemonnier, "Identification de la non-linearite d'une equation

parabolique quasi-lineaire," IRIA-Laboria, Rapport de Recherche n 45, 1973.

G. Chavent, M. Dupuy and P. Lemonnier, "History matching by use of

optimal control theory," Soc. Pet. Eng. J ., 15, pp. 74-86, 1975.

G. Chavent, "On the theory and practice of nonlinear least-squares"," Siam

J. Control and optimization,vol.23, 2, pp. 217-241, 1985.

C. Chicone, J. Gerlach, "A note on the identifiability of distributed parameters

in elliptic equations", Siam J. Math. Anal., vol18 1987, pp. 1378-1384.

G. Dhatt, A. Soulaimani, Y. Ouellet, M. Fortin, "Development of new

triangular elements for free surface flows," Int, J. for N urn. Meth. in Fluids,

Vol.6, pp. 895-911, 1986.

P. Dupuis, Y. Ouellet, A. Soulaimani, "Modelisation d'un ecoulement tourbillonnaire

en regime permanent", Can. J. Civ. Eng. 13, pp. 310-318, 1986.

A. Soulaimani, N .E Elkadri E, "Sur une methode de decentrage de schemas

d'elements finis resolvant les equations de Navier-Stokes et de Saint-Venant,"

Revue Europeenne des elements finis, Vol.l, 3, pp. 279-307, 1992.

R. S. Falk, "Error estimates for the numerical identification of variable

coefficient", Math. Comp. vol. 40, pp. 537-546, 1983.

K. H. Hoffman, J. Sprekels, "On the identification of elliptic problems by

assymptotic regularization ", Num. Funct. Anal. and Optim., vol. 7, pp.

-177, 1984.

M. Idrissi, A. Soulaimani, "Identification of the friction coefficient in shallow

water flows using optimal control", Proceedings of the international conference

on finite elements in fluids- New trends and applications, Venezia, Italy,

pp. 1471-1475, October 1995.

Y. Jarny, M. N. Ozisik, J.P Bardon, "A general optimization method

using adjoint equation for solving multidimensional inverse heat conduction",

Int. Jour. Heat Mass Transfer, 34, 11, pp. 2911-2919, 1991

N. Kaneko, T. Kodama, M. Kawahara, "Estimation of eddy viscosity coefficient

in a periodic shallow water equation," Comp. Meth. in Applied Mech.

and Eng., 112, pp.165-183, 1994.

R. V. Kohn, B. D. Lowe, "A variational method for parameter identification",

RAIRO Mathematical Modelling and Numerical Analysis, vol. 22,1, pp.

-158, 1988.

C. Kravaris , J .H Seinfeld, "Identification of parameters in distributed parameter

systems by regularisation", Siam J. Control and optimization, vol.23,

, pp. 217-241, 1985.

J .L Lions, "Optimal control of systems governed by partial differential

equations," Springer-Verlag, Berlin, 1971.

J .L Lions, "Some aspects of modeling problems in distributed parameter

systems," in Proc. IFIP Working conference, Rome 1976, A. Ruberti ed, lecture

note in control and Information sciences, Vol 1, Springer-Verlag, Berlin, pp.

-41, 1978

J. Peraire,O.C. Zienkiewicz, K. Morgan, "Shallow water problems: Ageneral

explicit formulation", Int. Jour. for Num. Meth. in Eng. vol.22, pp.

-574, 1986.

G. R. Richter, "An inverse problem for the steady state diffusion equation",

Siam J. Appl. Math. vol. 41, pp, 210-221, 1981.

G. R. Richter, "Numerical identification of a spatially varing diffusion

coefficient", Math. Comp., vol. 36, pp. 375-386, 1981.

Y. Saad, M.H. Shultz, "GMRES a Generalized Minimal Residual algorithm

for solving nonsymetric linear systems", Siam J. Sci. Statist. Comput. 7, pp.

-869, 1986.

A. Soulaimani, Y. Saad, "A robust finite element method for three dimensional

free surface flows", to appear in Comp. Meth. Appl. Mech. Eng.

A. N. Tikhonov, V. Y. Arsenin, "Solution of ill-posed Problem", Winston,

Washington, DC, 1977.

Downloads

Published

1997-02-12

How to Cite

ldrissi, M. ., & Soulaimani, A. . (1997). Un probleme d’identification de parametre associe aux equations de Saint-Venant. European Journal of Computational Mechanics, 6(4), 399–430. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3433

Issue

Section

Original Article