Sur one methode de decentrage de schemas d'elements finis resolvant les equations de Navier-Stokes et de Saint-Venant

Authors

  • Azzeddine Soulaimani Ecole de technologie superieure Universite du Quebec, departement de genie mecanique 4750 Henri-Julien, Montreal, H2T 2C78, Canada
  • Nacer-Eddine Elkadri Elyamani Universite Laval, departement de genie mecanique Ste-Foy, GJK-7P4, Canada

Keywords:

finite elements, Navier-Stokes, Shallow-Water equations, , Flux limiting methods

Abstract

A unified finite element method for the computation of two dimensional compressible viscous and free surface flows is presented. The Navier-Stokes (resp. ShallowWater) equations are solved in terms of the dependent variables velocity and cr which is the logarithm of the density (resp. of the head water). It is particulary shown that it is necessary to use stable variational formulation at least for the continuity equation to avoid any oscillations in case of rapid flows. The method proposed herein combines the ideas behind Stream-Line Upwinding Petrov Galerkin Method and Flux limiting methods in order to introduce a stabilisation mechanism only where it is required. Numerical computations of relatively high Reynolds number (2000- 10000) two-dimensional transonic and transcritical flows around a NACA-0012 airfoil exhibit a progression from a steady to periodic vortex sheding flows.

 

Downloads

Download data is not yet available.

References

T.J.R. Hughes and M. Mallet.," A new finite element method

for computational fluid dynamics III.", Computer Methods in Applied

Mechanics and Engineering, vol. 58 (1986).

G. Dhatt., A. Soulaimani., Y. Ouellet and M. Fortin., "Development

of New Triangular Elements for Free Surface Flows.",

International Journal for Nwnerical Methods in Fluids, vol. 6,

pp. 895-911, (1986).

M.O. Bristeau., R. Glowinski., B. Mantel., J. Periaux., G.

Roge., "Acceleration of compressible Navier-Stokes calculations,

Numerical Methods For Fluid Dynamics III.", Clarendon Press

Oxford (1988).

M. Fortin., A. Soulaimani., "Finite element approximation of

compressible viscous flows", in Proc. of the Int. Conf. in Computational

Methods in Flow Analysis, Okyama, (1988).

A. Soulaimani., M. Fortin., G. Dhatt., Y. Ouellet., and F.

Bertrand., "Simple Continuous Elements For Two and Three Dimensional

Incompressible Flows." ,Comput. Methods Appl.Mech.

Eng., vol. 62, pp. 47-69, (1987).

M. Tabata and M. Yaoi., "Upwind Finite Element Approximation

of the Navier-Stokes Equation and its Application to a Free

surface problem.", in Proc. of the Int. Conf. in Computational

Method in Flow Analysis, Okayama, (1988).

P.K. Sweby., "High Resolution Schemes Using Flux Limiters

for Hyperbolic Conservation Laws," SIAM J. Num. Anal., 21, pp

-1011 (1984).

Y. Saad and M. H. Schultz., "GMRES: A generalized minimal

residual algorithm for solving nonsymmetric linear systems",

SIAM J. Sci. Stat. Comp., 7 (1986).

J. Zdenek., T.J.R. Hughes and S. Farzin., "A Globally Convergent

Matrix-Free Algorithm for Implicit Time-Marching Schemes

Arising in Finite Element Analysis in Fluids.", To appear in:

Computer Methods in Applied Mechanics and Engineering.

L. Cambier., "Computation of Viscous Transonic Flows Using

and Unstaedy Type Method and a Zonal Grid Refinement

Technique.", 0 .N .E.R.A, France, 1985.

S. Boivin, "Simulation d'ecoulements compressibles a nombre

de Reynods elve.", These de doctorat, Universite Laval, 1990.

Downloads

Published

1992-03-24

How to Cite

Soulaimani, A. ., & Elyamani, N.-E. E. . (1992). Sur one methode de decentrage de schemas d’elements finis resolvant les equations de Navier-Stokes et de Saint-Venant. European Journal of Computational Mechanics, 1(3), 279–307. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3709

Issue

Section

Original Article