Comparaison de differents algorithmes de plasticite dans I' analyse non lineaire des structures de poutres 3D
Keywords:
non linear analysis, large displacements, plasticity, updated lagrangian formulation, progressive and global plastificationmethods, explicit and implicit algorithmsAbstract
This paper concerns the presentation and the comparaison of different methods of plasticity of 3D beam structures. The method of progressive plastification is based on the plasticity equations in termes of stresses ; the method of global plastification is based on the plasticity equations in termes of internal forces. The integration of plasticity is carried out with different explicit or implicit schemes. The integrated (total) constitutive law based on the deformation theory of plasticity is also used. The comparaison of the two types of plastification (progressive and global) combined with different integration schemes is the objectif of this paper. The numerical results of our e/asto-plastic beam model are compared with the results of shell models and experiments. This comparaison shows the efficiency and performance of each modele.
Downloads
References
[ARG 82) ARGYRIS J.H., BONI B., HINDENLANG U., KLEIBER M., <
two- and three-dimensional elasto-plastic frames. The natural approach >>, Computer
Methods in Applied Mechanics and Engineering, Vol. 35, p. 221-248, 1982.
[ALB 92) AL-BERMANI F.G.A., KITIPORNCHAI S., << Nonlinear analysis of transmission
towers», Eng. Struct., Vol. 14, W 3, p. 139-151, 1992.
[ALM 95) AI MIKDAD M., IBRAHtMBEGOVIC A., << Interpolation non lineaire pour un element
fini de poutre en grandes rotations tri-dimensionnelles », Revue europeennc des elements
finis, Vol. 4, No. 5-6, p. 693-718, 1995.
[BAT 90) BATOZ J.L., DHATT G., Modelisation des structures par elements finis, Vol. 2,
Poutres et plaques, Hermes, Paris, 1990.
[BAT 88] BATOZ J.L., Guo Y.Q., POL P., <
(modeles et exemples) », StruCoMe 88, Paris, p. 81-94, novembre 1988.
[CHE 77) CHEN W.F., ATSUTA T., Theory of beam-columns, Vol. 2, Space behavior and
design, McGraw-Hill, New-York, 1977.
[CRI 79) CRISFIELD M., Ivanov's yield criterium for thin steel shells, U.K. Transport and Road
research Laboratory, report 919, 1979.
[CRI 91) CRISRELD M.A., Non-linear finite element analysis of solids and structures, Vol. I,
John Wiley & Sons, 1991.
[CON 90] CoNCI A., GATIASS M., << Natural approach for geometric non linear analysis of
thin-walled frames», Int. J. Num. Meth. Eng., Vol. 29, p. 1653-1679, 1990.
[CHE 95) CHEN W. F., SOHAL I., Plastic design and second-order analysis of steel frames,
Springer-Verlag, New York, 1995.
[OUR 89] DURBAN D., << An approximate analysis of elastoplastic torsion », Int. J. Mech.
Engng Education, Vol. 17, No.4, p. 235-242, 1989.
[DOD 87] DODDS R. H., << Numerical techniques for plasticity computations in finite element
analysis», Computers & Structures, Vol. 26, No. 5, p. 767-779, 1987.
[GJE 81) GJELSVIK A., The theory of thin walled bars, John Wiley & Sons, 1981.
[GEN 93) GENDY A. S., SALEEB A.F., << Generalized yield surface representations in the
elasto-plastic three-dimensional analysis of frames », Computers & Structures, Vol. 49,
No. 2, p. 351-362, 1993.
(GRA 92] GRATACOS P., MONTMITONNET P., CHENOT J.L., << An integration scheme for
Prandtl-Reuss elastoplastic constitutive equations >>, New Advances in Computational
Structural Mechanics, P. Ladeveze and 0. C. Zienkiewicz (Editors), Elsevier Science
Publishers B.V., 1992.
[GUO 87] Guo Y.Q., << Analyse non lineaire statique et dynamique des poutres
tridimensionnelles elasto-plastiques >>, These de Doctorat, Universite de Technologie de
Compiegne, 1987.
[HAL 87] HALPHEN B., SALEN<;:ON J., << Elasto-plasticite >>, Ponts et Chaussees, 1987.
[IBR 94] IBRAHtMBEGOVIC A.,<< On implicit integration of a general form of rate-independent
plasticity>>, Engineering Modelling, Vol. 7, No. 1-2, p. 21-27, 1994.
[JAA 87] JAAMEI S., JETIEUR P., FREY F., << Numerical tests with the Jet shell element >>,
Part I : Introduction and introductory tests, !REM Internal Report 87/9, Ecole
Polytechnique Federate de Lausanne, 1987.
(KIT 91] KITIPORNCHAI S., ZHU K., XIANG Y., AL-BERMANI F.G.A., <
surfaces for monosymmetric and asymmetric sections >>, Eng. Struct., Vol. 13, 1991.
[KHA 95] KHAN A. S., HUANG S., Continuum theory of plasticity, John Wiley & Sons, 1995.
[LEM 88] LEMAITRE J., CHABOCHE J.L., Mecanique des materiaux so/ides, Dunod, 2e edition,
Paris, 1988.
[MEE 90] MEEK J. L., LOGANATHAN S.,<< Geometric and material non-linear behaviour of
beam-columns>>, Computers & Structures, Vol. 34, No. I, p. 87-100, 1990.
[MAR 94] MARUR S.R., KANT T., << A stress correction procedure for analysis of inelastic
frames under transient dynamic loads >>, Computers & Structures, Vol. 50, No. 5,
p. 603-613, 1994.
[OWE 80] OWEN D.R.J., HINTON E., Finite elements in plasticity, Pineridge Press, Swansea,
(ORB 82] 0RBISON J.G., McGUIRE W. ABEL J.F., << Yield surface applications in non linear
steel frame analysis >>, Computer Methods in Applied Mechanics and Engineering,
Vol. 33, p. 557-573, 1982.
[POW 86] POWELL G. H., CHEN P. F., << 3D beam-column element with generalized plastic
hinges>>, 1. Engng. Mech., Vol. 112, No.7, 1986.
[SIM 86] SIMO J.C., TAYLOR R.L., << A return mapping algorithm for plane stress
elastoplasticity >>, International Journal for Numerical Methods in Engineering, Vol. 22,
p. 649-670, 1986.
[SIM 93] SIMO J.C., MESCHKE G., << A new class of algorithms for classical plasticity
extended to finite strains>>, Computational Mechanics, Vol. II, p. 253-278, 1993.
(SHA 94] SHAKOURZADEH H., << Modelisation des structures-poutres tridimensionnelles a
parois minces et simulation du comportement non lineaire geometrique et elastoplastique
>>,These de Doctorat, Universite de Technologie de Compiegne, France, 1994.
(SCH 79] SCHREYER H.L., KULAK R.F .. KRAMER J.M., << Accurate numerical solutions for
elasto-plastic models>>, 1. Pressure Vessel Technology, No. I 01, p. 226-237, 1979.
[TO! 93] TOI Y., ISOBE D., << Adaptively shifed integration techniques for finite element
collapse analysis of framed structures », Int. J. Num. Meth. Engng., Vol. 36, p. 2323-
, 1993.
[WUN 86] WUNDERLICH W., OBRECHT H., SCHRODTER V., <
load-earring behaviour of thin-walled spatial beam structures with warping
constraints », Int. J. Num. Meth. Engng., Vol. 22, p. 671-695, 1986.
[ZIE 91] ZIENKIEWICZ O.C., TAYLOR R.L., The finite element method, Vol. 2, McGraw-Hill,
th edition, 1991.