Analyse non lineaire de coques minces elastoplastiques avec I' element DKT12
Keywords:
thin shell, DKT/2 finite element, large displacements, elasto-plasticityAbstract
A shell element called DKT/2 is presented for non-linear analysis which includes large displacements and elasto-plasticity. The triangular facet shell element with 12 degrees of freedom is obtained by the superposition of the membrane element TJ (or CST) and the Discrete Kirchhoff plate bending element DKT6. An Updated Lagrangian Formulation at each Iteration (ULFI) greatly simplifies the non-linear analysis by considering the global deformation as a superposition of a rigid body motion and a movement involving small displacements and rotations. A global criterion is taken into account to consider the elastoplastic behaviour. The non-linear systems of equations are solved by using various algorithms and strategies based on the Newton method. Several examples are presented to demonstrate the efficiency and precision of the formulation and algorithms.
Downloads
References
[AMA 96] AMMAR S., Methode asymptotique perturbee appliquee a Ia resolution de
problemes non lineaires en grandes rotations et grands deplacements, These de doctoral,
Universite Laval, Quebec, 1996.
[BAS 92] BASAR Y., DING Y ., «Finite-rotation shell elements for the analysis of finite
rotation shell problems ''• International Journal for Numerical Methods in Engineering,
Vol. 34, pp. 165-169, 1992.
[BAT 88] BATOZ J.L., Guo Y.Q., PoL P., « Grands deplacements de coques minces elastoplastiques
(modeles et excmples) », Proc. StruCoMe 88, Paris, Ed. Hermes, pp. 81-94,
[BAT 89] 8ATOZ J.L., DUROUX P., ROELANDT, J .M., POL P., «A membrane bending finite
element model for sheet forming », Proceedings Jrd Int. Conf. in Numerical Methods in
Industrial Forming Processes NUMIFORM 89, Fort Collins, Col., USA, 26-30 June 1989,
Balkema Editeur, pp. 389-394.
[BAT 92] BATOZ J .L., DHATT G., Modelisation des structures par elements finis, Vol. 3
« Coques », Ed. Herm~s. Paris, 1992.
[BRA 97] BRANK B., PERIC D., DAMJANIC F.B., « On large deformations of thin elasto-plastic
shells : implementation of a finite rotation model for quadrilateral shell element »,
International Journal for Numerical Methods in Engineering, Vol. 40, pp. 689-726, 1997.
[BUE 92] BUCHTER N., RAMM E.,« Shell theory versus degeneration :A comparison in large
rotation shell problems », International Journal for Numerical Methods in Engineering,
Vol. 34, pp. 39-59, 1992.
[CRI 92] CRISFIELD M., PENG X., « Efficient non-linear shell formulations with large
rotations and plasticity », Computational plasticity : Models, Software and Applications,
Ed. D.R.J. Owen et al. Part I, Pineridge Press, Swansea, pp. 1979-1997, 1992.
[GUO 87] Guo Y.Q., Analyse non lincaire statique et dynamique des poutres
tridimensionnelles elastoplastiques, Th~se de Doctoral, Universite de Technologic de
Compiegne, 1987.
[GUO 97] GJO Y.Q., SHAKOURZADEII H., « Comparaison de differents algorithmes de
plasticite dans !'analyse non lincaire des structures de poutres 3D », Revue Europeenne
des Elements Finis, Vol. 6, n° 2, pp. 135-164, 1997.
[IBR 97] IDRAHIMBEGOVIC A., «Stress resultant geometrically exact shell theory for finite
rotations and its finite element implementation » , Appl. Mech. Review, Vol. 50, no 4,
pp. 199-226, April 1997.
[JlA 94] JIANG L., CHERNUKA M.W., PEGG N.G., «A co-rotational updated Lagrangian
formulation for geometrically finite clement analysis of shell structures » , Finite Elements
in Analysis and Design, Vol. 18, pp. 129-140, 1994.
[MOR 71] MORLEY L.S.D., «The constant moment plate bending element » , J. Strain
Analysis, Vol. 6, n° I, pp. 20-24, 1971 .
[NOO 89] N:>OR A.K., BELYTSCHKO T., SIMO J .C., Eds., «Analytical and computational
models for shells», ASME Publication CED, Vol. 3, 1989.
[ONO 94] ONATE,E., ZARATE F., R..ORES F., «A simple triangular element for thick and thin
plate and shell analysis », International Journal for Numerical Methods in Engineering,
Vol. 37, pp. 2569-2582, 1994.
[PAL 97] PALMA F.J., YlLARINO A.,« Analyse lineaire de coques minces elastiques par deux
MEF non conformes »,Revue Europeenne des Elements Finis, Vol. 6, n° I, pp. 7-22,
[PEN 92] PENG X., CRJSRELD M.A., « A consistent co-rotation formulation for shells using
the constant stress/constant moment triangle», International Journal for Numerical
Methods in Engineering, Vol. 35, pp. 1829-1847, 1992.
[POL 92] POL P., Simulation du comportement elastoplastique de coques minces par elements
finis, These de Doctoral, Universite de Technologic de Compiegne, 1992.
[ROE 91] ROELANDT J.M., BATOZ J.L. «Shell finite element for deep drawing problems :
computational aspects and resu lts », IUTAM Symposium on Finite lneT stic
Deformations, Hannover, West Germany, 19-23 August 1991 (D. Besdo, E. Stein (Eds).
Finite Inelastic Deformations - Theory and Applications, IUTAM Symposium
Hannover/Germany 1991, (!} Springer Verlag Berlin Heidelberg 1992).
[SHA 94] SHAKOURZADEH H., Modelisation des structures-poutres tridimensionnelles ll parois
minces et simulation du comportement non lineaire geometrique et elasto-plastique, These
de Doctoral, 1994.
[SHA 96) SHAKOURZADEH H., Guo,Y.Q., BATOZ J.L., «On the large displacements and
instabilities of 3D elasto-plastic thin walled beam structures ~. ECCOMAS 96, Paris,
pp. 197-203, 1996.
[SIM 88] StMo J.C., Fox D.O., RtFAI M.S.,,, Formulation and computation aspects of a stress
resultant geometrically exact shell model - Computational mechanics 88 - Theory and
applications », Proc. Int. Conf on Computational Eng. Science, Atlanta, April 1988.
[SIM 92] SIMO J.C., KENNEDY J.G., «On a stress resultant geometrically exact shell model.
Part V. Non-linear plasticity : formulation and integration algori thms », Computer
Methods in Applied Mechanics and Engineering, Vol. 96, pp. 133- 171, 1992.
[VAN 93] VAN KEULEN F., On refined triangular plate and shell elements, PhD The is,
Technische Universiteit, Delft, 1993.
[WUN 92] WUNDERLICH W., Eds., «Modelling of shells with non-linear behavior»,
EUROMECH 292, TU, MUnich, 1992.
[ZIE 91] ZIENKIEWICZ O.C., Ed., Selected papers from WCCM II : « Modelling of plates and
shells », International Journal for Numerical Methods in Engineering, Vol. 34, 199 1