Mechanical inclusions identification by evolutionary computation
Keywords:
genetic algorithms, stochastic optimization, inverse problem, mechanical inclusions, linear elasticityAbstract
The problem of the identification of mechanical inclusion is theoritically ill-posed, and to-date numerical algorithms have demonstrated to be inaccurate and unstable. On the other hand, Evolutionary Algorithms provide a general approach to inverse problem solving. However, great care must be taken during the implementation : the choice of the representation, which determines the search space, is critical. Three representations are presented and discussed. Whereas the straightforward mesh-dependent representation suffers strong limitations, both mesh-independent representation provide outstanding results on simple instances of the identification problem, including experimental robustness in presence of noise.
Downloads
References
T. Back. Evolutionary Algorithms in theory and practice. New-
York:Oxford University Press, 1995.
H.-G. Beyer. Toward a theory of evolution strategies: Some asymptotical
results for the (1, +A)-theory. Evolutionary Computation, 1(2):165-188,
H.-G. Beyer. Toward a theory of evolution strategies: The (IL, A)-theory.
Evolutionary Computation, 2(4):381-407, 1994.
H.-G. Beyer. Toward a theory of evolution strategies: On the benefit of
sex- the (IL//.L,A)-theory. Evolutionary Computation, 3(1):81-111, 1995.
H.-G. Beyer. Toward a theory of evolution strategies: Self-adaptation.
Evolutionary Computation, 3(3):311-347, 1995.
H.-G. Beyer. On the asymptotic behavior of multi-recombinant evolution
strategies. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,
editors, Proceedings of the 4th Conference on Parallel Problems Solving
from Nature, LNCS 1141, pages 122-131. Springer Verlag, 1996.
J.-D. Boissonnat and M. Yvinec. Geometrie algorithmique. Ediscience
International, 1995.
H. D. Bui. An introduction to inverse problems in Structural Mechanics.
CRC Press, Boca Raton, 1994.
H. D. Bui. Sur quelques problemes inverses elastiques en mecanique de
l'endommagement. In Deuxieme Colloque National en Calcul des Structures,
R. Cerf. Une theorie assymptotique des algorithmes genetiques. PhD thesis,
Universite de Montpellier II, March 1994.
R. Cerf. An asymptotic theory of genetic algorithms. In J.-M. Alliot,
E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial
Evolution, volume 1063 of LNCS. Springer Verlag, 1996.
C. D. Chapman, K. Saitou, and M. J. Jakiela. Genetic algorithms as an
approach to configuration and topology design. Journal of Mechanical
Design, 116:1005-1012, 1994.
P. G. Ciarlet. Mathematical Elasticity, Vol I: Three-Dimensional Elasticity.
North-Holland, Amsterdam, 1978.
P. G. Ciarlet. The Finite Element Method for Elliptic Problems. NorthHolland,
Amsterdam, 1988.
A. Constantinescu. Sur ['identification des modules elastiques. PhD thesis,
Ecole Polytechnique, June 1994.
J. Dejonghe. Allegement de platines metalliques par algorithmes genetiques.
Rapport de stage d'option B2 de l'Ecole Polytechnique. Palaiseau,
Juin 1993.
D. B. Fogel. An analysis of evolutionary programming. In D. B. Fogel
and W. Atmar, editors, Proceedings of the 1st Annual Conference on Evolutionary
Programming, pages 43-51. Evolutionary Programming Society,
D. B. Fogel. Evolutionary Computation. Toward a New Philosophy of
Machine Intelligence. IEEE Press, Piscataway, NJ, 1995.
D. B. Fogel. Phenotypes, genotypes and operators in evolutionary computation.
In D. B. Fogel, editor, Proceedings of the Second IEEE International
Conference on Evolutionary Computation. IEEE, 1995.
L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through
Simulated Evolution. New York: John Wiley, 1966.
C. M. Fonseca and P. J. Fleming. On the performance assessment and comparison
of stochastic multiobjective optimizers. In H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, editors, Proceedings of the 4th
Conference on Parallel Problems Solving from Nature, number 1141 in
LNCS, pages 584-593. Springer Verlag, Sept. 1996.
P.L. George. Automatic mesh generation, application to Finite Element
Methods. Wiley & Sons, 1991.
C. Ghaddar, Y. Maday, and A. T. Patera. Analysis of a part design
procedure. Submitted to Numerishe Mathematik, 1995.
D. E. Goldberg. Genetic algorithms in search, optimization and machine
learning. Addison Wesley, 1989.
J. J. Grefenstette. Optimization of control parameters for genetic algorithms.
IEEE Trans. on Systems, Man and Cybernetics, SMC-16, 1986.
J. J. Grefenstette. Virtual genetic algorithms: First results. Technical
Report AIC-95-013, Navy Center for Applied Research in Artificial Intelligence,
February 1995.
J. Holland. Adaptation in natural and artificial systems. University of
Michigan Press, Ann Arbor, 1975.
E. Jensen. Topological Structural Design using Genetic Algorithms. PhD
thesis, Purdue University, November 1992.
T. Jones and S. Forrest. Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In L. J. Eshelman, editor, Proceedings
of the 6th International Conference on Genetic Algorithms, pages 184-192.
Morgan Kaufmann, 1995.
K. E. Kinnear Jr. A perspective on gp. In Jr K. E. Kinnear, editor,
Advances in Genetic Programming, pages 3-19. MIT Press, Cambridge,
MA, 1994.
A. B. Kahng and B. R. Moon. Toward more powerful recombinations. In
L. J. Eshelman, editor, Proceedings of the 6th International Conference on
Genetic Algorithms, pages 96-103. Morgan Kaufmann, 1995.
L. Kallel and M. Schoenauer. Fitness distance correlation for variable
length representations. Submitted, 1996.
C. Kane. Algorithmes genetiques et Optimisation topologique. PhD thesis,
Universite de Paris VI, July 1996.
C. Kane, F. Jouve, and M. Schoenauer. Structural topology optimization
in linear and nonlinear elasticity using genetic algorithms. In Proceedings
of the ASME 21st Design Automation Conference. ASME, Boston, Sept.
C. Kane and M. Schoenauer. Genetic operators for two-dimensional shape
optimization. In J.-M. Alliot, E. Lutton, E. Ronald, M. Schoenauer, and
D. Snyers, editors, Artificial Evolution, number 1063 in LNCS. Springer
Verlag, Septembre 1995.
C. Kane and M. Schoenauer. Topological optimum design using genetic
algorithms. Control and Cybernetics, Special Issue on Optimum Design,
To appear.
R. V. Kohn and A. McKenney. Numerical implementation of a variational
method for electric impedance tomography. Inverse Problems, 6:389-414,
J. R. Levenick. Inserting introns improves genetic algorithm success rate
: Taking a cue from biology. In R. K. Belew and L. B. Booker, editors,
Proceedings of the 4th International Conference on Genetic Algorithms,
pages 123-127, 1991.
D. Luu. Algorithmes genetiques et diagrammes de voronoi: Optimisation
et identification de modeles geologiques, Sept. 1996. Rapport de DEA
d'Analyse Numerique de l'Universite de Paris VI.
Z. Michalewicz. Genetic Algorithms+Data Structures=Evolution Programs.
Springer Verlag, New-York, 1996. 3rd edition.
(41] F. P. Preparata and M. I. Shamos. Computational Geometry: an introduction.
Springer Verlag, 1985.
(42] N. J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex
Systems, 5:183-20, 1991.
(43] N.J. Radcliffe and P. D. Surry. Fitness variance offormae and performance
prediction. In D. Whitley and M. Vose, editors, Foundations of Genetic
Algorithms 3, pages 51-72. Morgan Kaufmann, 1994.
(44] I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme
nach Prinzipien des Biologischen Evolution. Fromman-Holzboog Verlag,
Stuttgart, 1973.
(45] G. Rudolph. Convergence analysis of canonical genetic algorithm. IEEE
Transactions on Neural Networks, 5(1):96-101, 1994.
(46] G. Rudolph. Convergence of non-elitit strategies. In Z. Michalewicz, J. D.
Schaffer, H.-P. Schwefel, D. B. Fogel, and H. Kitano, editors, Proceedings
of the First IEEE International Conference on Evolutionary Computation,
pages 63-66. IEEE Press, 1994.
(47] J.D. Schaffer, R. A. Caruana, L. Eshelman, and R. Das. A study of control
parameters affecting on-line performance of genetic algorithms for function
optimization. In J.D. Schaffer, editor, Proceedings of the 3rd International
Conference on Genetic Algorithms, pages 51-60. Morgan Kaufmann, 1989.
M. Schoenauer. Representations for evolutionary optimization and identification
in structural mechanics. In J. Periaux and G. Winter, editors,
Genetic Algorithms in Engineering and Computer Sciences, pages 443-
John Wiley, 1995.
(49] M. Schoenauer. Shape representations and evolution schemes. In L. J.
Fogel, P. J. Angeline, and T. Back, editors, Proceedings of the tJh Annual
Conference on Evolutionary Programming. MIT Press, 1996.
(50] H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley
& Sons, New-York, 1981. 1995- 2nd edition.
(51] D. Thierens and D.E. Goldberg. Mixing in genetic algorithms. InS. Forrest,
editor, Proceedings of the 5th International Conference on Genetic
Algorithms, pages 38-55. Morgan Kaufmann, 1993.