Mechanical inclusions identification by evolutionary computation

Authors

  • Marc Schoenauer CMAP - URA CNRS 756 Ecole polytechnique, 91128 Palaiseau
  • Leila Kallel CMAP - URA CNRS 756 Ecole polytechnique, 91128 Palaiseau
  • Fran~ois Jouve CMAP - URA CNRS 756 Ecole polytechnique, 91128 Palaiseau

Keywords:

genetic algorithms, stochastic optimization, inverse problem, mechanical inclusions, linear elasticity

Abstract

The problem of the identification of mechanical inclusion is theoritically ill-posed, and to-date numerical algorithms have demonstrated to be inaccurate and unstable. On the other hand, Evolutionary Algorithms provide a general approach to inverse problem solving. However, great care must be taken during the implementation : the choice of the representation, which determines the search space, is critical. Three representations are presented and discussed. Whereas the straightforward mesh-dependent representation suffers strong limitations, both mesh-independent representation provide outstanding results on simple instances of the identification problem, including experimental robustness in presence of noise.

 

Downloads

Download data is not yet available.

References

T. Back. Evolutionary Algorithms in theory and practice. New-

York:Oxford University Press, 1995.

H.-G. Beyer. Toward a theory of evolution strategies: Some asymptotical

results for the (1, +A)-theory. Evolutionary Computation, 1(2):165-188,

H.-G. Beyer. Toward a theory of evolution strategies: The (IL, A)-theory.

Evolutionary Computation, 2(4):381-407, 1994.

H.-G. Beyer. Toward a theory of evolution strategies: On the benefit of

sex- the (IL//.L,A)-theory. Evolutionary Computation, 3(1):81-111, 1995.

H.-G. Beyer. Toward a theory of evolution strategies: Self-adaptation.

Evolutionary Computation, 3(3):311-347, 1995.

H.-G. Beyer. On the asymptotic behavior of multi-recombinant evolution

strategies. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel,

editors, Proceedings of the 4th Conference on Parallel Problems Solving

from Nature, LNCS 1141, pages 122-131. Springer Verlag, 1996.

J.-D. Boissonnat and M. Yvinec. Geometrie algorithmique. Ediscience

International, 1995.

H. D. Bui. An introduction to inverse problems in Structural Mechanics.

CRC Press, Boca Raton, 1994.

H. D. Bui. Sur quelques problemes inverses elastiques en mecanique de

l'endommagement. In Deuxieme Colloque National en Calcul des Structures,

R. Cerf. Une theorie assymptotique des algorithmes genetiques. PhD thesis,

Universite de Montpellier II, March 1994.

R. Cerf. An asymptotic theory of genetic algorithms. In J.-M. Alliot,

E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial

Evolution, volume 1063 of LNCS. Springer Verlag, 1996.

C. D. Chapman, K. Saitou, and M. J. Jakiela. Genetic algorithms as an

approach to configuration and topology design. Journal of Mechanical

Design, 116:1005-1012, 1994.

P. G. Ciarlet. Mathematical Elasticity, Vol I: Three-Dimensional Elasticity.

North-Holland, Amsterdam, 1978.

P. G. Ciarlet. The Finite Element Method for Elliptic Problems. NorthHolland,

Amsterdam, 1988.

A. Constantinescu. Sur ['identification des modules elastiques. PhD thesis,

Ecole Polytechnique, June 1994.

J. Dejonghe. Allegement de platines metalliques par algorithmes genetiques.

Rapport de stage d'option B2 de l'Ecole Polytechnique. Palaiseau,

Juin 1993.

D. B. Fogel. An analysis of evolutionary programming. In D. B. Fogel

and W. Atmar, editors, Proceedings of the 1st Annual Conference on Evolutionary

Programming, pages 43-51. Evolutionary Programming Society,

D. B. Fogel. Evolutionary Computation. Toward a New Philosophy of

Machine Intelligence. IEEE Press, Piscataway, NJ, 1995.

D. B. Fogel. Phenotypes, genotypes and operators in evolutionary computation.

In D. B. Fogel, editor, Proceedings of the Second IEEE International

Conference on Evolutionary Computation. IEEE, 1995.

L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through

Simulated Evolution. New York: John Wiley, 1966.

C. M. Fonseca and P. J. Fleming. On the performance assessment and comparison

of stochastic multiobjective optimizers. In H.-M. Voigt, W. Ebeling,

I. Rechenberg, and H.-P. Schwefel, editors, Proceedings of the 4th

Conference on Parallel Problems Solving from Nature, number 1141 in

LNCS, pages 584-593. Springer Verlag, Sept. 1996.

P.L. George. Automatic mesh generation, application to Finite Element

Methods. Wiley & Sons, 1991.

C. Ghaddar, Y. Maday, and A. T. Patera. Analysis of a part design

procedure. Submitted to Numerishe Mathematik, 1995.

D. E. Goldberg. Genetic algorithms in search, optimization and machine

learning. Addison Wesley, 1989.

J. J. Grefenstette. Optimization of control parameters for genetic algorithms.

IEEE Trans. on Systems, Man and Cybernetics, SMC-16, 1986.

J. J. Grefenstette. Virtual genetic algorithms: First results. Technical

Report AIC-95-013, Navy Center for Applied Research in Artificial Intelligence,

February 1995.

J. Holland. Adaptation in natural and artificial systems. University of

Michigan Press, Ann Arbor, 1975.

E. Jensen. Topological Structural Design using Genetic Algorithms. PhD

thesis, Purdue University, November 1992.

T. Jones and S. Forrest. Fitness distance correlation as a measure of problem

difficulty for genetic algorithms. In L. J. Eshelman, editor, Proceedings

of the 6th International Conference on Genetic Algorithms, pages 184-192.

Morgan Kaufmann, 1995.

K. E. Kinnear Jr. A perspective on gp. In Jr K. E. Kinnear, editor,

Advances in Genetic Programming, pages 3-19. MIT Press, Cambridge,

MA, 1994.

A. B. Kahng and B. R. Moon. Toward more powerful recombinations. In

L. J. Eshelman, editor, Proceedings of the 6th International Conference on

Genetic Algorithms, pages 96-103. Morgan Kaufmann, 1995.

L. Kallel and M. Schoenauer. Fitness distance correlation for variable

length representations. Submitted, 1996.

C. Kane. Algorithmes genetiques et Optimisation topologique. PhD thesis,

Universite de Paris VI, July 1996.

C. Kane, F. Jouve, and M. Schoenauer. Structural topology optimization

in linear and nonlinear elasticity using genetic algorithms. In Proceedings

of the ASME 21st Design Automation Conference. ASME, Boston, Sept.

C. Kane and M. Schoenauer. Genetic operators for two-dimensional shape

optimization. In J.-M. Alliot, E. Lutton, E. Ronald, M. Schoenauer, and

D. Snyers, editors, Artificial Evolution, number 1063 in LNCS. Springer

Verlag, Septembre 1995.

C. Kane and M. Schoenauer. Topological optimum design using genetic

algorithms. Control and Cybernetics, Special Issue on Optimum Design,

To appear.

R. V. Kohn and A. McKenney. Numerical implementation of a variational

method for electric impedance tomography. Inverse Problems, 6:389-414,

J. R. Levenick. Inserting introns improves genetic algorithm success rate

: Taking a cue from biology. In R. K. Belew and L. B. Booker, editors,

Proceedings of the 4th International Conference on Genetic Algorithms,

pages 123-127, 1991.

D. Luu. Algorithmes genetiques et diagrammes de voronoi: Optimisation

et identification de modeles geologiques, Sept. 1996. Rapport de DEA

d'Analyse Numerique de l'Universite de Paris VI.

Z. Michalewicz. Genetic Algorithms+Data Structures=Evolution Programs.

Springer Verlag, New-York, 1996. 3rd edition.

(41] F. P. Preparata and M. I. Shamos. Computational Geometry: an introduction.

Springer Verlag, 1985.

(42] N. J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex

Systems, 5:183-20, 1991.

(43] N.J. Radcliffe and P. D. Surry. Fitness variance offormae and performance

prediction. In D. Whitley and M. Vose, editors, Foundations of Genetic

Algorithms 3, pages 51-72. Morgan Kaufmann, 1994.

(44] I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme

nach Prinzipien des Biologischen Evolution. Fromman-Holzboog Verlag,

Stuttgart, 1973.

(45] G. Rudolph. Convergence analysis of canonical genetic algorithm. IEEE

Transactions on Neural Networks, 5(1):96-101, 1994.

(46] G. Rudolph. Convergence of non-elitit strategies. In Z. Michalewicz, J. D.

Schaffer, H.-P. Schwefel, D. B. Fogel, and H. Kitano, editors, Proceedings

of the First IEEE International Conference on Evolutionary Computation,

pages 63-66. IEEE Press, 1994.

(47] J.D. Schaffer, R. A. Caruana, L. Eshelman, and R. Das. A study of control

parameters affecting on-line performance of genetic algorithms for function

optimization. In J.D. Schaffer, editor, Proceedings of the 3rd International

Conference on Genetic Algorithms, pages 51-60. Morgan Kaufmann, 1989.

M. Schoenauer. Representations for evolutionary optimization and identification

in structural mechanics. In J. Periaux and G. Winter, editors,

Genetic Algorithms in Engineering and Computer Sciences, pages 443-

John Wiley, 1995.

(49] M. Schoenauer. Shape representations and evolution schemes. In L. J.

Fogel, P. J. Angeline, and T. Back, editors, Proceedings of the tJh Annual

Conference on Evolutionary Programming. MIT Press, 1996.

(50] H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley

& Sons, New-York, 1981. 1995- 2nd edition.

(51] D. Thierens and D.E. Goldberg. Mixing in genetic algorithms. InS. Forrest,

editor, Proceedings of the 5th International Conference on Genetic

Algorithms, pages 38-55. Morgan Kaufmann, 1993.

Downloads

Published

1996-06-17

How to Cite

Schoenauer, M. ., Kallel, L. ., & Jouve, F. . (1996). Mechanical inclusions identification by evolutionary computation. European Journal of Computational Mechanics, 5(5-6), 619–648. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3489

Issue

Section

Original Article